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Preface

In July 2022, as I was standing at a bus stop in Trieste together with other participants
in a conference, Matteo Valleriani invited me, if I had a book of not too large extent, to
submit it to a book series of which he was an editor. At the time I had just finished the
text of a more extensive book on “The World of the Abbaco – Abbacus mathematics
analyzed and situated historically between Fibonacci and Stifel” [Høyrup 2024] and had
in front of me half a year’s work on preparation of that text for the publisher, and two
other major impending tasks. At the moment I could therefore not take up the invitation –
or gauntlet, or whatever you will call it.

However, during my work on the “World of the Abbaco” and spin-offs from that work
I had become increasingly aware that its perspective was basically anthropological – it
analyses each of the single historical stages on its own, evidently pointing out connections
between them but deliberately staying away from the notorious “royal road to me”, except
for a few concluding pages. This seemed to call for a supplement, an analysis whose
perspective was perpendicular to what I had already done – that is, an analysis showing
as such the meanderings, hesitations, false trails and false and genuine starts that in the
end produced, if not our present then at least the 17th-century beginnings of modern
algebra. While algebra is an important topic in “The World of the Abbaco” it is definitely
not the only one – from the anthropological perspective it could never be, abbacus algebra
always thrived within a densely connected network, which also contributes to explaining
the explorations, the hesitations, and the false trails. The complement instead had to
concentrate on algebra. Other complements might of course have been, and remain possible:
the career of the teaching of practical arithmetic until the 1950s at least; the on-off interest
in the Euclidean theory of irrationals; or the occasional work on congruo-congruent numbers
and other topics classified today under the theory of numbers – too discontinuous to
constitute a “career”. The present complement, in any case, deals with algebra.

I took up work in February 2023. As I anticipated, many of the objects in view were
the same as in the previous book, just seen from a different angle; others had been hidden
from view, and many of these I only became aware of during the work. In particular I
now believe to understand how Viète and Descartes were pushed to introduce the use of
abstract coefficients (mostly seen as the decisive step in the creation of modern algebra)
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and did not need to “invent” them. This is dealt with in Chapter VI. So is the (equally
meandering) birth of the general parenthesis from Viète onwards.

The outcome is strictly a piece of local history (with a few remarks on the Arabic
background), restricted to Latin and later Western Europe.

The outcome is here, with thanks for the invitation or gauntlet to Matteo. While “The
World of the Abbaco” kept me occupied during the Covid-19 epidemic, forgetful of the
work around me (not true, see [Booß-Bavnbek & Høyrup 2021]), the present work allowed
me to make a soft landing.

Technically: All translations into English from original sources or secondary literature
are mine where nothing different is specified. When translating, I try to keep as close to
the original text as reasonably possible, often at the cost of stylistic elegance (with the
exception due to type-setting convenience that fractions are mostly written with a slash,
whereas the sources invariably use a horizontal fraction line). Terms and phrases in the
original language as well as explanations from my hand may be inserted in square brackets.
For ease of understanding I have added modern diacritics in words from medieval and
Renaissance sources – thus règle and lyée where the original has regle and lyee. Since
the present-day distinctions between U and V and between I and J were only established
toward the end of the period I deal with, I have interpreted earlier spellings in agreement
with present-day conventions – thus unnd instead of vnnd. Apart from that and from the
expansion of abbreviations, quotations from original sources are intended to be exact.

Illustrations taken from manuscripts are redrawn for clarity, not reproduced directly.
References are made according to the author/editor-date system, in the format [NN

year], or alternatively “NN ... [year]”. The ordering of the bibliography is after first author.
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Introduction

The changes that produced Modern algebra

Latin Europe first encountered algebra in the 12th century in the translation of al-
Khwārizmı̄’s algebra – that is, in this shape:[1]

Divide ten in two segments and divide one of the two parts by the other, and four result.
Whose rule is that you posit one of the two segments to be a thing and the other ten less
a thing. Then divide ten less a thing by a thing so that four result. However, now you have
known that when you multiply what comes out of a division by the same by which you
divided, it will give back your amount which you divided. But what results from the
division in this question was four, and that by which was divided was the thing. Multiply
therefore four in a thing, and they will be four things. Thus four things are made equal
to the amount which you divided, which is ten less a thing. Restore thus ten by a thing,
and add the same to the four [things]. It will hence be that ten are made equal to five things.
Now you have thus reduced this question to one of the six chapters, which is that roots
are made equal to number.

Who is familiar with modern equation algebra only and never encountered rhetorical algebra
will probably need to translate these lines into symbols in order to discover that they do
indeed contain (equation) algebra.[2]

We may compare with some passages from Euler’s Introductio in analysin infinitorum.
First vol. I §139 [Euler 1748: I, 104–105]:

1 From Gerard of Cremona’s translation [ed. Hughes 1986: 248]. In order to make the structure of
the argument as clear as possible I make this and later translations as literal as possible without
loss of meaning or basic grammaticality.

For ease of understanding, I shall italicize thing throughout the book when it stands for an
algebraic unknown. Similarly with its powers (presently census, later also cube etc.).

Gerard’s translation was preceded by that of Robert of Chester, which however appears to have
had a very restricted circulation. In practice, Gerard was the one who presented Latin Europe with
the technique.

That Gerard’s translation is much closer to al-Khwārizmı̄’s original text than that of Robert,
and also closer than the extant Arabic “living” text, is immaterial for the present discussion. Who
is interested may have a look at [Høyrup 1998].

2 The reader who feels the need may proceed thus: 10 = a+b. Posit a:= t, then b = 10–t, (10–t)÷t =
4, etc.
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Let now in the formulas of § 133[3] n be an infinitely small number, or n = , i being1

i

an infinitely large number. Then

cos nz = cos = 1 and sin nz = sin = .z

i

z

i

z

i

The sine of a vanishing arc is indeed equal to the arc itself, whereas the cosine = 1.z

i
Once that is posited one has

1 =
(cosz –1 sinz)

1

i (cosz– –1 sinz)
1
i

2
and

=z

i

(cosz –1 sinz)
1

i –(cosz– –1 sinz)
1

i

2 –1

But taking the hyperbolic logarithm[4] above (§ 125) we have shown that =l (1 x)
, or, writing y instead of 1+x, that = . If for y is written on onei (1 x)

1

i – i y
1

i 1

i
ly 1

hand , on the other , then [from the first equation] itcosz –1 sinz cosz– –1 sinz
results that

1 = = 1 ,
1 1

i
l (cosz –1 sinz) 1 1

i
l (cosz– –1 sinz)

2

since the logarithms disappear [because of the factor / JH], so that nothing follows. This1

i

first equation hence leads to nothing remarkable. However, the second equation about the
sine yields:

= ,z

i

1 1

i
l (cosz –1 sinz)– 1

i
l (cosz– –1 sinz)

2 –1

whence

z = ,
1

2 –1
l

cosz –1 sinz

cosz– –1 sinz

from which follows how imaginary logarithms can be reduced to arcs.

Next the “general equation” for lines of the second order from vol. II §101 [Euler 1749:
II, 48].

3 [Respectively

cos nz =
(cosz 1 sinz)n (cosz 1 sinz)n

2
and

sin nz = .
(cosz 1 sinz)n (cosz 1 sinz)n

2
Here, n stands for any natural number./JH]

4 [The “natural logarithm” of our terminology. Euler’s “l ” thus corresponds to our “log”./JH]
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= 0yy
(εx γ)

ζ
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We need not go into the details of Euler’s arguments, but we notice that now the
presentation looks grosso modo as the equation algebra we know. We may feel unhappy
with Euler’s lack of rigour, finding perhaps a δ and an ε to be needed, but that is a different
matter and concerns what happened after Euler’s time to mathematical analysis, not what
happened to algebra during the six centuries that separate Euler from Gerard’s translation
of al-Khwārizmı̄.

So, what has happened?
At the level of purpose we notice that al-Khwārizmı̄ teaches a technique for solving

problems. Euler is certainly able to do that too, but he also develops theory, and even when
he solves problems he uses the theory he (or his predecessors) had developed.

What first strikes the eye, however, is the use of letter symbols; in Gerard’s translation,
as well as in al-Khwārizmı̄’s original, everything including numerals is expressed in fully
written words. If we go deeper into that question we observe that Euler’s operations are
performed directly at the level of these letters – which is precisely the reason we speak
about them as symbols and not merely as abbreviations for words meant to serve within
a verbal argument; verbal argumentation has certainly not disappeared, but it now surrounds
the operations on the symbols, where it provides the framework of the logical structure.[5]

Introductory teaching of algebra in school at first presents symbolic algebra with a
single unknown called x (that, at least, was the situation when I went to middle school,
and I suppose that this is again how things stand in most of the world after the worst
excesses of the new-math movement). That is close to al-Khwārizmı̄, the only difference
being that he uses the word “thing”. Elsewhere, al-Khwārizmı̄ makes use of a census, which
looks like another unknown; actually it is no independent entity but simply the outcome

5 Cf. Nesselmann’s often badly understood distinction [1842: 302] between three algebraic types –
spoken of as Stufen, “stages”, but clearly not meant by Nesselmann as being in necessary
chronological order (then he should have believed Regiomontanus to precede Diophantos).

Nesselmann’s “first and lowest” stage is that of “rhetorical algebra”, in which everything in
the calculation is explained in full words. The second, “syncopated algebra”, makes use of standard
abbreviations for certain recurrent concepts and operations, but “its exposition remains essentially
rhetorical”. The third is “symbolic algebra”, in which

all forms and operations that appear are represented in a fully developed language of signs
that is completely independent of the oral exposition, thereby making every rhetorical
exposition superfluous. We may execute an algebraic calculation from the beginning to
the end in fully intelligible way without using one written word, and at least in simpler
calculations we only now and then insert a conjunction between the formulas so as to spare
the reader the labour of searching and reading back by indicating the connection between
the formula and what precedes and what follows.
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of the multiplication of the thing by itself.
Euler, on the other hand, operates with several genuine unknowns (two, x and y, in

the equation from II.§101, elsewhere as many as he needs). Magnitudes that arise as powers
of these, moreover, are now written is a way that excludes any idea that they might be
unknown on their own. As regards the single unknowns, Euler designates their second
power as a product, yy etc.; higher powers are denoted by exponents.

Modern school algebra, as also Euler but not al-Khwārizmı̄, also has special signs
for mathematical operations: «+», «–», a fraction line standing for division, etc. ; and also
an equation sign «=» (together with «<», «>», and many more). These signs can of course
be spoken, but often in several ways – «+» thus as “plus”, “and”, “added to”, etc.;
moreover, they are not bound to a specific spoken language, they may be read in any
tongue which serves to speak about algebra. They are ideograms, not logograms – signs
referring to non-linguistic concepts and operations, not word signs.

As we see, Euler also has recourse to other letter symbols, α, β, γ, δ, ε, ζ. These stand
where al-Khwārizmı̄ and basic school algebra ascribe specific numerical values to the
coefficients. The introduction of unspecified or “abstract” coefficients had as consequence
that the unknowns become variables, though through a rather contorted process.[6]

All of these transformations are well known, and have often been pointed out. Less
discussed, however, though also fundamental, it the appearance of the algebraic
parenthesis – for instance in the equation

1 = .(cosz –1 sinz)
1

i (cosz– –1 sinz)
1
i

2

A parenthesis, it should be emphasized, is not a bracket, nor a pair of brackets. It
is what is enclosed by the brackets, which can then be treated just as a single number would
be treated – for instance, allowing Euler to raise to the power .(cosz –1 sinz) 1

i

6 From the semantics of the term one might suspect it to have resulted from the use of algebra or
infinitesimal calculus to problems of movement, which turns out not to be true. Fermat, admittedly,
uses the term occasionally in connection with imagined movement, but never in a context that can
be characterized as algebraic. After 1650, the term turns up intermittently in more or less algebraic
contexts without having the character of a technical term – thus in [Wallis 1655: 95] and in Johann
Bernoulli’s letters as reproduced in [Bousquet 1745: I]. Euler, on the other hand, treats it as a
technical term when describing the first volume of the Introductio [1748: I, VIII] as dealing with
“variable quantities and their functions” – this explicit function concept being in fact due to Johann
Bernoulli [Youschkevitch 1976: 57–60]. Thereby we have functions of one or several variables.
When such a function or set of functions are equalled to other functions or numbers we have one
or more equations, which in a somewhat sloppy use of language become equations with one or more
variables – “sloppy” because they are no longer variable but fixed (unless the equation or equation
system is indeterminate).

That, however, happened well after the end of the period we are considering.
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Euler, however, has other parentheses. The numerator

(cosz –1 sinz)
1

i (cosz– –1 sinz)
1
i

as a whole is indeed divided by 2. That is, the fraction line delimits the numerator as well
as the denominator as parentheses. Even the root sign delimits the radicand as a
parenthesis (as we shall see, these two types of parentheses precede the bracket-defined
parentheses by centuries).

The present books aims at tracing these innovations, singly and in their interaction.
It is thus an instance of “history in future-perfect”, a question about how the present came
about. But it is not a piece of retrospective teleology, explaining the historical process
as resulting from a pull toward the present. If such a pull there was, it is not easy to discern
it in the sources – nor do the actors seem to have been aware of it.[7] What we see is
rather hesitating or even stumbling, in terms I have used on earlier occasions [Høyrup
2010; 2015]. We are in the same situation as Stendhal’s Fabrice in La chartreuse de Parme,
who arrives in the middle of the confusion of the battle of Waterloo – but only discovers
afterwards that there has been a battle, and even a battle that decides succeeding history.

Algebraic background(s)

The process started with the translation of al-Khwārizmı̄’s algebra, but not only. Some
input – though much less influential than usually believed, only modestly effectual indeed
from the later 15th century onward – came from Leonardo Fibonacci’s Liber abbaci and
Pratica geometrie. And then, which was the really important event, came the direct adoption
of algebra into the Italian abbacus school tradition from the early 14th century onward.

Al-Khwārizmı̄

We shall take things in order, beginning with al-Khwārizmı̄. Around 820 CE, on the
request of the Khalif al-Ma mūn, he wrote the first extant – and quite likely the very first –
treatise presenting what is important and beautiful in al-jabr wa’l-muqabalah.

The core of the art – the “six chapters” referred to in the initial quotation – are six
equation types or “cases” (originally born as mathematical riddles) about a māl, a
“possession” (appearing twice in this original sense, as “amount”, in the quotation) and
its square root; in Gerard’s translation the māl becomes a census, in Italian censo.[8] In

7 That is not to say that no such pulls existed, but then only in a quasi-Darwinian way, as mental
“ecological niches”. If a tool more or less accidentally produced by one worker turns out to be fruitful
it may be adopted and further unfolded by others. May, need not – as we shall see clearly exemplified
by the repeated introductions of several unknowns.

8 This, beyond the rarity of manuscripts containing it, is one of the reasons we must regard as quasi-
nil the influence of Robert’s translation: he uses substantia, a perfect Latin translation which nobody
adopted.
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abbreviation (not symbols since they are not operated on here), C standing for census,
r for radix, N for number and α for a coefficient revealed indirectly by the use of a plural:

Kh1 C = αr – first example C = 5r.
Kh2 C = N – first example C = 9.
Kh3 αr = N – first example r = 3.
Kh4 C+αr = N – first example C+10r = 39.
Kh5 C+N = αr – first example C+21 = 10r.
Kh6 αr+N = C – first example 3r+4 = C.

Kh1–Kh3 are “simple”, Kh4–Kh6 “composite” or “mixed”. As we see, all but Kh3 are
given in normalized form;[9] examples after the first one then show how to reduce non-
normalized equations to normalized form.

Formally, all seem to treat the census as the basic unknown, and after finding the root
all rules also state the census. Already al-Khwārizmı̄, however, reveals that he considers
the root the genuine unknown. That can be seen in Kh3, the case to which the problem
in our initial quotation is reduced; here, the normalized equation would be the solution
(as indeed it is in the first example).

For all cases, first a rule is given. For Kh4 this one [ed. Hughes 1986: 234]:

Census and roots that are made equal to number are as if you say, “a census and ten roots
are made equal to thirty-nine dragmas”, whose rule is that you halve the roots, which in
this question are five. Then multiply these in themselves, and from them come twenty-five.
To which add thirty-nine, and they will be sixty-four. Whose root you take, which is eight.
Then diminish from them the half of the roots, which is five. Then there remain three,
which is the root of the census. And the census is nine. And if two census or three or more
or fewer are mentioned, similarly reduce them to one census. [...]

We know from Thābit ibn Qurrah [ed. trans. Luckey 1941] that this rule (and the
corresponding rules for the other cases) came from the “al-jabr people”, those whose
practice al-Ma mūn had asked al-Khwārizmı̄ to put into a book.

Al-Khwārizmı̄, however, was not satisfied with that. He was a member of al-Ma mūn’s
“House of Wisdom”, and other scholars close to al-Ma mūn’s court were familiar with
the lettered proofs of Greek geometry (both translating it and extending it independently),
and we may guess that this was the reason that even al-Khwārizmı̄ provided geometric
proofs for the correctness of the rules. For Kh4 he even offers two, first this one – Figure 1
shows the accompanying diagram:[10]

The reason, however, is like this. A census and ten roots are made equal to thirty-nine
dragmas. Let thus there be made for it a square surface with unknown sides, which we

9 This is different in the living Arabic text that has come down to us. The initial examples are the
same, however. They are all normalized, showing that Gerard’s text reflects the original.

10 The upper diagram is the one given by Gerard [ed. Hughes 1986: 237], the lower diagram
corresponds to what is found in the Arabic manuscripts [ed. Rashed 2007: 110f ].
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want to know together with its roots. Which is the surface ab. Each

Figure 1

of its sides, however, is its root. And each of its sides, when it is
multiplied by some number, then the number that results is the number
of roots which are also as the root of this surface. Since it is said that
with the census there are ten roots, I shall take the fourth of ten, which
is two and a half. And I shall make of each fourth with one of the
sides of the surface a surface. They thus make with the first surface,
which is the surface ab four equal surfaces whose length is equal to
the root of ab and whose width is two and a half. Which are the
surfaces g, h, t, k.

Joining these four rectangular surfaces to the first surface, and
moreover the four small square lacking in the corners, each of area
2 1/2 ×2 1/2 = 6 1/4 and together thus 25, gives us a larger quadratic
surface equal to 64 and hence with side 8. Detracting in each end
the fourth of the [number of] sides we are left with 3, which is the
root of the census.

This argument proves that

r = ,39 4 10

4

2
2 10

4

not what is stated by the rule, namely

r = ,39 10

2

2 10

2

and al-Khwārizmı̄ has to give additional arguments that the two are identical.
Next, however, al-Khwārizmı̄ gives another proof. Stylistic

Figure 2

arguments suggest that it has been added in a later revision of the
text (but certainly by al-Khwārizmı̄ himself) – see [Høyrup 1998].
Here, as shown in Figure 2, 5 times the side is added to two sides
of the square representing the census. This is not Euclidean, but
if al-Khwārizmı̄ would make a proof based on Elements II.6 but
explain it to an audience with no Euclidean training, this is exactly
what he would do.[11]

The first proof is definitely not Euclidean, but it corresponds to what is done in the
Old Babylonian text BM 13901 #23 (from somewhere around 1800–1700 BCE), which
finds the side of a square from “the four sides and the area” – a riddle which is also found
in the pseudo-Heronic collection Geometrica 24.5 [ed. Heiberg 1912: 418] and in a number
of Arabic mensuration treatises (and later in Fibonacci as well as Luca Pacioli). There
can be little doubt that al-Khwārizmı̄ knew it, and that he choose this symmetric but

11 The orientation, we observe, is also the one found in the Elements. There are only four reasonable
possibilities, however, of which this one is probably the one corresponding best to a right-left writing
direction, so this could well be an accident.
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somewhat inadequate way either because it was the first to come to his own mind or
because he expected it to speak more immediately to his readers.

These six cases with their rules were apparently seen by al-Khwārizmı̄ as the core
(or the most “important and beautiful” part) of the discipline. Its name, however, “al-jabr

and al-muqābalah”, was not taken from them. Al-jabr is the operation which we
encountered in the first quotation as “restoration”, the reparation of a deficiency. There,
“ten less a thing” was restored as ten, and in order to preserve the equality, a thing also
had to be added to the other side.[12]

In the longer run, “restoration” was reinterpreted as the simultaneous addition of
something lacking to both sides of an equation, and al-muqābalah, “opposition”, as the
corresponding subtraction on both sides. Originally, however, the meaning of the latter
term seems to have been the confrontation of two equal magnitudes as the sides of an
equation, perhaps in the production of the reduced equation; this would often involve
subtraction on both sides, which explains the reinterpretation (al-Khwārizmı̄’s text is
ambiguous).

So, these operations (or at least restoration) are used, as we already saw in the
introductory quotation (above, p. 1). But al-Khwārizmı̄ teaches even more – matters without
which is would be difficult to accept his book as an algebra in more than self-chosen name.
After the geometric proofs comes a “chapter on multiplication”. It deals with the
multiplication of binomials, whose members may be added or subtracted numbers (including
fractions) or an algebraic thing. A “chapter of aggregation and diminution” then explains
the addition and subtraction of binomials involving numbers and surds or algebraic entities,
or even trinomials involving numbers, census and roots. But the chapter goes beyond its
heading and also deals with transformations of the types

= , = , √p √q = , a√p b√q =a C a 2 C
√p

√q

p

q
p q a 2p b 2q

the last of which is derived from the first and the third.
For the addition and subtraction of binomials, al-Khwārizmı̄ produces geometric

demonstrations, similar to what can be done in a two-dimensional coordinate system. For
the addition of trinomials, so he says, he had tried to make something similar, but it became
incomprehensible (as we can imagine), “but its necessity is clear in words”.

Then follow first a chapter containing six problems, each reducible to one of the basic
cases – our initial quotation comes from the illustration of the third case; and then a
collection of miscellaneous problems, all reducible to one of the six cases. Gerard offers
12 problems, Robert somewhat more, and the extant Arabic text even more; some of the
latter are also listed by Gerard as having been found “in another book”, an indication that

12 Outside algebra, the term might also designate multiplicative restoration, for instance in Abū Bakr’s
Liber mensurationum [ed. Busard 1968: 88], where 2/5 of an area is restored through multiplication
by 2 1/2 . For this operation, however, al-Khwārizmı̄ uses other terms (in Gerard’s Latin reintegrare).
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he had access to at least two manuscripts but choose to translate the one which actually
seems to be the best from a philological point of view.

Fibonacci

Fibonacci introduces algebra in chapter 15 part 3 of his Liber abbaci. A first version
of this work was produced in 1202,[13] and a second version around 1228, at least not
before 1226.[14] This part 3 at first [ed. Giusti 2020: 622–627] presents the foundations,
and then [ed. Giusti 2020: 627–690] some 99 problems (the precise number depends on
the extent to which we count variations as independent problems).

In the first section (probably going back to 1202), under the influence of al-
Khwārizmı̄’s geometric proofs, Fibonacci reinterprets the census as another term for square.
His order of the cases is different from that of al-Khwārizmı̄, but there are echoes in his
text that show him to have known Gerard’s translation [Miura 1981] – yet echoes, no
copying, indicating that Fibonacci was here engaged in an independent exposition.[15]

That is confirmed by his geometric proofs, in particular those for Kh4. Like al-Khwārizmı̄
he offers two but not the same. He has nothing similar to al-Khwārizmı̄’s first proof. The
second starts like this (the example still deals with a census with 10 roots being equal
to 39 – see Figure 3):

Let there hereby be a tetragon ABCD having in each side more

Figure 3

than 5 cubits, and let there be taken on the side AB the point E

and on the side AD the point F and on the side BG the point F

and on the side CD the point H, and let each of the straight lines
BE, CG and CF and DF be 5 cubits, and let the straight lines
EH and FG be connected. And because the quadrilateral AC is
a tetragon, the side DA is equal to the side BA; and since, when
from equals, equals are removed, what remains are equal,
therefore when from DA DF is removed, and from BA BE is
removed, each of which are 5, remains accordingly EA equal to the straight line BE. [...].

What follows after this piece of Euclidean rigour (the appeal to Common Notion 3, “If

13 According to the Pisa calendar, we may assume, in which New Year was determined by Incarnation,
meaning that the Julian date was between 25 March 1201 and 24 March 1202.

14 For the problems of dating, see [Giusti 2020: xvii–xviii] and [Høyrup 2021b: 4, 18]. For
convenience, and since the exact year is of no consequence for the present theme, I shall henceforth
refer to “the 1228 version”

15 At least in 1228 but probably also in 1202 (and certainly in the Practica geometrie), Fibonacci
was faithful when copying while avoiding pastiche in his own supplementary explanations [Høyrup
2021b].

The echoes of al-Khwārizmı̄ show, on the other hand, that here Fibonacci was inspired for his
independent thought by a book, while the first fourteen chapters of the 1202 version appear to have
been mainly based on oral interaction in the locations he had visited as a merchant.
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equals be subtracted from equals ...”) is not much different from al-Khwārizmı̄’s second
proof. But the latter is analytic, “treating the unknown as if it were known”, while
Fibonacci’s procedure is rather synthetic (“having in each side more than 5 cubits”[16]).

Fibonacci is thus on his own. That is confirmed by his lettering of the diagram. A
global survey of Fibonacci’s writings shows that any copy from an Arabic or Greek
original, or from a Latin translation from the Arabic or Greek which we know about, would
use the alphabetic order of the source and speak of a square ABGD.

The second section contains several sequences of problems that can be show to be
borrowed from Abū Kāmil though indirectly – one sequence at least from a treatise that
was already translated into Latin (the Arabic original as well as the translation being now
lost) – see [Høyrup 2022].

None of this – the ordering of cases, the synthetic approach, the problems indirectly
borrowed from Abū Kāmil – are reflected in later sources before Pacioli (below, p. 11).
Fibonacci was on his own. And stayed on his own. His fame was a product of late-18th-
and 19th-century Italian attempts to create historical legitimacy for Italy as a nation-state.
Well-deserved fame, certainly – he was a fine mathematician though hardly an “Italian
mathematician” at a time where patriotism (coupled to mutual destructive enmity) was
Genovese, Pisan or Florentine.

Fibonacci does not discuss the arithmetic of roots and binomials in his presentation
of algebra. That is indeed the topic of his own extensive chapter 14, which goes far beyond
what can be found in al-Khwārizmı̄, presenting also much material from Elements X though
rather disorderly (almost certainly because much of this advanced stuff has been added
in 1228 without thorough editing of what was there before).[17]

Abbacus algebra

The Italian abbacus school was a school for artisans’ and merchants’ sons, thriving
between Genoa, Milan and Venice to the north and Umbria to the south. The first trace
we have of it is a witness in a contract from Bologna from 1265, who characterizes himself
as an abbacus master. In the 16th century it merged with the elementary school teaching
reading and writing.

The abbacus school was mostly frequented by boys of age 11–12 for a year and a
half or two years.[18] They were taught the Hindu-Arabic numerals and how to calculate

16 As in Euclid, there is no explanation of where this “5” comes from (but Fibonacci evidently draws
on the analysis he has found in al-Khwārizmı̄). Synthetic argument is the enemy of pedagogics
(though perhaps a productive challenge for independent mathematical minds).

17 See the analysis in [Høyrup 2021b: 18–25].

18 Besides these there must also have been apprentices, future abbacus teachers. Two manuscripts
also look as if they were made collectively by a master and his assistants/apprentices or the assistants
alone (Vatican, Vat. lat. 10488, and Biblioteca Statale di Lucca, Codice 1754).
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with them; in spite of what is sometimes believed because of the name it did not use any
kind of reckoning board. It went on with the rule of three, metrological conversions and
shortcuts; simple and composite interest; alloying; and perhaps the simple false position.
Neither the double false position nor algebra were taught.

However, abbacus masters were members of a craft, and as such they were in
competition – either for students, if they held private schools, as was mostly the case in
larger cities, or for positions in the communal schools of smaller towns. For this purpose,
they had to excel also in more advanced matters – and, as personal and professional identity
goes, we may safely assume that they were also personally proud of this competence. Here,
the double false position and algebra could serve.

We need not consider the double false position, since its interaction with algebra was
utterly marginal.[19] Algebra was also more important, as confirmed by Pacioli.[20] In
the ninth distinction of his Summa [1494: fol. 111v] we read:

I find that I shall no longer defer the part which is most necessary to the practice of
arithmetic and also of geometry, in the vernacular commonly called “the major art” or
“the art of the thing” or “algebra and almucabala”, by us called “theoretical practice”
[pratica speculativa ]. Because in it are contained higher matters than in the minor art or
mercantile practice.

Further on (fol. 144r ) we encounter another tribute to the algebraic art:

Having with God’s assistance come to the much desired place: that is, to the mother of
all the cases by common people [il vulgo ] called “the rule of the thing” or “the major
art”, that is, theoretical practice, also called algebra et almucabala in Arabic language,
or according to some in Chaldeic, which in our language is as much as to say “of restoration
and opposition, algebra, id est restauratio, almucabala, id est oppositio vel contemptio,

et solidatio. Because in the said way infinite questions are solved. And those which still
cannot be solved I shall point out.

When Pacioli wrote these eulogies, the discipline had developed for almost two centuries
within the abbacus environment, and it was ready to confront the Liber abbaci – the Latin
passage in the latter quotation draws directly or indirectly upon chapter 15 as well as
chapter 14 of the Liber abbaci. As was to turn out, however, Fibonacci no longer had
anything of interest to offer.

This part of the story had begun in the early 14th century, most likely in 1307. In

19 An ultra-short description of its central principle is given in note 128.

20 A similar eulogy is found on fol. 3033r in the Ottoboniano Praticha (below, p. 21), where algebra
is introduced:

All that which has been said on this point would be in vain without the present, since here
is shown the rule that solves all cases that can be solved, speaking in squares and cubes
and in all the continuous quantities, as I shall show in the cases.
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that year, a certain Jacopo da Firenze, working in Montpellier in Provence, wrote a
Tractatus algorismi. Three manuscripts claim to contain it:
– Vatican, MS Vat. Lat. 4826, according to watermarks from around the mid-15th

century;[21]

– Milan, Trivulziana MS 90, dated by watermarks to around 1410;
– Florence, Riccardiana MS 2236, written on vellum and therefore undatable.[22]

Only the Vatican manuscript contains an algebra. Together with a final collection of mixed
problems this algebra might therefore seem to be a secondary insertion, as supposed by
Van Egmond when he made his complete catalogue of abbacus manuscripts. However,
stylistic analysis shows that the supposed secondary insertions share a number of
characteristic stylistic features with the material that is shared by all three manuscripts,
which makes it next to certain that the supposed insertions were already in the original
(while the other two manuscripts represent an abbreviated version adapted to the school
curriculum) – see [Høyrup 2007: 5–25].

However, even if the algebra in the Vatican manuscript should have crept in after 1307,
other manuscripts show that this will have happened before 1327; for convenience I shall
therefore speak of it as “Jacopo’s algebra”. Moreover, a number of other abbacus
manuscripts from the earlier 14th century provide us with similar material though none
of them so completely. There is therefore no doubt that “Jacopo’s algebra” represents the
new discipline, and it will be fitting to describe it as such (though with one necessary
supplement).

The supplement belongs in the very beginning. Jacopo starts directly with the rules,
“when the things are equal to number”, etc. There is no introductory explanation, but we
know from Jacopo’s own words that something was lost, since the rules are followed by
the remark “Here I end the six rules combined with various examples”; elsewhere such
remarks invariably refer to what has been promised in the beginning of a section. The
loss can well have happened during the transmission from Jacopo’s original to the Vatican
manuscript (which is at least two copyings removed from the original); less likely is that

21 A dating “by watermark” of a manuscript means that some of its sheets carry watermarks that
are also present in other documents that are firmly dated. In the actual case, two watermarks are
found. One is also used in a document written in Pisa in 1440, the other in documents written in
Siena between 1450 and 1452 and in Florence in 1453–54. See [Van Egmond 1980: 224] and [Briquet
1923: II, 344; III, 591]. As we see, this dating is not too precise. It is mostly better, however, than
“internal evidence” when the date of a particular manuscript is asked for: a year of writing indicated
in a colophon may well be copied from an earlier original (all manuscripts of Jacopo’s Tractatus

say 1307); the dates of real or fictional loan contracts are no better.

22 Several scholars, including Warren Van Egmond [1980: 148] date it to 1307, but that is simply
the year given in the colophon of all three manuscripts. Comparison with the Milan manuscript,
to which it is close, shows the Florence manuscript to contain somewhat more errors and thus to
be farther removed in the stemma (if not necessarily in time) from the original.
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the introduction was already missing in an earlier treatise used by Jacopo (in that case,
Jacopo would probably have produced a preamble of his own).

The beginning of the algebra of a certain Giovanni di Davizzo from 1339 is copied
in a manuscript from 1424 (Vat. Lat. 10488. fols 29v–32r ). This fragment seems to
contain – not what was missing, since Giovanni’s introduction is idiosyncratic (details
later), but a parallel elucidating the kind of introductory material to expect: sign rules (plus
times plus makes plus, plus times minus makes minus, etc.) and rules for the products
of powers of the algebraic unknown and for operations with roots and perhaps binomials.

Returning to what we have – Jacopo’s rules and the appurtenant examples – and
comparing with al-Khwārizmı̄ and Fibonacci – we observe some striking differences.
– All cases now deal with a thing (the root has disappeared). The censo[23] is still

neither a primary nor some kind of parallel unknown; it is simply the product of the
thing with itself.

– Probably in consequence of this shift the order of cases is now (t standing for the thing)

Ja1 αt = N

Ja2 αC = N

Ja3 αC = βt

Ja4 αC+βt = N

Ja5 βt = αC+N

Ja6 αC = βt+N

As we see, all cases are now presented in non-normalized form; accordingly, the first
step in all rules is a normalization.

– There are no geometric demonstrations. The rules are simply stated as rules – the first
runs:

When the things are equal to the number, one shall divide the number in the
things,[24] and that which results from it is number. And as much is worth the thing.

All six cases are provided with examples, sometimes one, sometimes two, the case Ja5
(the one allowing a double solution[25]) with three. Five are pure-number problems, five
deal with pretended mercantile questions. Of the former, three are of the classical “divided
10” type, which we already encountered in al-Khwārizmı̄ (above, p. 1). No examples are

23 In order to keep in mind the character of the kind of algebra we deal with I shall use these
loanwords (and the loan-translation thing) everywhere they are used in the sources, disregarding
orthographic variation (e.g., chubo or cubo). When coming to German material, I shall use the
German terms.

24 The early abbacus texts distinguish division in n, referring to the division into n equal parts, and
division per n, referring to the numerical operation. It seems that the abbacus authors did not
understand the meaning of the underlying reasoning (they may “divide per n parts), but the
normalization division (like, for instance, the division in partnership calculations) is invariably in.

25 It should be observed that these two solutions (when they exist) are regarded as possibilities –
if one does not work, the other certainly will. The unknown is really seen as an unknown but already

existing number, and not as a variable that may take on different values fulfilling the given condition.
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formulated simply in terms of censi and things (corresponding to al-Khwārizmı̄’s census-

root-number). The substitute (we may consider it a cheap way to create apparent
complexity) consists of questions about numbers in given ratio. These were to become
common in abbacus algebra; when more than two number are involved the ratios are always
given so as to fit nicely together, for example as 2 : 3, 3 : 4, ... . The numbers can then
be posited as 2things, 3things, 4things (Jacopo’s examples, being restricted to two numbers,
do not demand this trick); the example for Ja2 shows how this allows to construct an
example corresponding to a given case:[26]

Find me two numbers that are in proportion[27] as is 2 of 3; and when each (of them)
is multiplied by itself, and one multiplication is detracted from the other, 20 remains. I
want to know which are these numbers.

Then there are the problems in genuine mercantile dress (numbers refer to case, letters
to position among the examples for the case in question):

1b. There are three partners, who have gained 30 libre. The first partner put in 10 libre. The
second put in 20 libre. The third put in so much that 15 libre of this gain was due to him.
I want to know how much the third partner put in, and how much gain is due to (each)
one of those two other partners.

4a. Someone lent to another one 100 libre at the term of 2 years, to make end of year.[28]

And when it came to the end of the two years, then that one gave back to him libre 150.
I want to know at which rate the libra was lent a month.

4b. There are two men that have denari. The first says to the second, if you gave me 14 of
your denari, and I threw them together with mine, I should have 4 times as much as you.
The second says to the first: if you gave me the root of your denari, I should have 30
denari. I want to know how much each man had.

5b. Somebody makes two voyages, and in the first voyage he gains 12. And in the second
voyage he gains at that same rate as he did in the first. And when his voyages were
completed, he found himself with 54, gains and capital together. I want to know with how
much he set out.[29]

6. Somebody has 40 gold fiorini and changed them to venetiani. And then from those venetiani

26 It also shows that Jacopo uses “restore” to designate subtractive (and elsewhere, as Fibonacci and
al-Khwārizmı̄, additive) operations on both sides of an equation. Opporre (corresponding to Latin
opponere and Arabic muqābalah ) is absent from Jacopo’s text; however, as mentioned above, p.
8, the original meaning of muqābalah /oppositio was probably the confrontation leading to the
construction of a simplified equations, and this appears to be reflected in the term raoguaglamento

used in example Ja5b [ed. Høyrup 2007: 316] about a simplified equation.

27 Jacopo here and elsewhere writes in propositione – few of the early abbacus writers were familiar
with proportion language (not to speak of proportion techniques and theory).

28 That is, “to calculate and add interest at the end of year” – in other words, at compound interest.

29 Both solutions are shown to be valid.
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he grasped 60 and changed them back into fiorini at one venetiano more per fiorino than
he changed them at first for me. And when he has changed thus, that one found that the
venetiani which remained with him when he detracted 60, and the fiorini he got for the
60 venetiani, joined together made 100. I want to know how much was worth the fiorino

in venetiani.

All deal with situations regularly treated in abbacus teaching, though in distorted ways –
properly commercial questions were always of the first degree, second-degree problems
could only be produced by asking odd questions. All also correspond to what is found
in the later abbacus tradition. The “give-and-take” problem 4b is particularly noteworthy –
the trick of introducing square roots or products in normally linear problems was to have
a great future.

Within the calculations, Jacopo uses “restore” to designate subtractive as well additive
operations on both sides of an equation. Opporre, as said, is absent from Jacopo’s text;
what we find is raoguaglamento, meaning “equation” or possibly “simplified equation”.
According to a fragment of another translation of al-Khwārizmı̄’s algebra, made by
Guglielmo de Lunis around the mid-13th century, this translates Arabic elmelchel (almost
certainly reflecting al-muqābalah in Iberian pronunciation).[30]

At first one might believe these particularities to point to pre-al-Khwārizmı̄an algebra.
So they probably do, but not directly. The pre-al-Khwārizmı̄an language is indeed still
used by al-Karajı̄ (later 10th and earlier 11th century). In the Kāfı̄ [trans. Hochheim 1878:
III, 10] he explains al-jabr to encompass additive as well as multiplicative completion
(cf. above, note 12); in the Fakhrı̄ [see Woepcke 1853: 64] he uses the same term not
only for additive restoration but also for subtraction from both sides of an equation, exactly
as does Jacopo. Moreover, he uses al-muqābalah about the formation of the reduced
equation.

Al-Karajı̄’s mathematics is much more advanced that what we find in early abbacus
algebra. In the di-Davizzo fragment, however, we find matters that point to the innovations
produced by al-Karajı̄. Firstly, di Davizzo, just like al-Karajı̄ (see [Woepcke 1853: 53]),
presents the sequence of algebraic powers and their reciprocals as two geometric series
(although, as we shall see, di Davizzo goes wrong). Secondly, in the Fakhrı̄ [Woepcke
1853: 57], al-Karajı̄ formulates much better than Abū Kāmil [ed. trans. Rashed 2012: 316]
the conditions under which sums of radicals can be simplified – for instance, that

= = =8 18 2 8 18 8 18 24 8 18 50

because 8×18 is a perfect square; exactly such transformations are also shown by Giovanni
di Davizzo. All in all, abbacus algebra seems to have drawn much from an tradition that
can be characterized as “diluted al-Karajı̄” (cf. [Høyrup 2011]).

30 Two slightly different and partly independent versions of the fragment exist. Raffaele Canacci’s
Ragionameni d’algebra [ed. Procissi 1954: 302] speaks of aghuaglamento while Benedetto da Firenze
[ed. Salomone 1982: 1] writes asomigliamento.
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Not all of this is in Jacopo’s presentation of algebra. However, after the examples
for the first- and second-degree cases he offers rules (but no examples) for all but two
of the cubics and quartics that can be reduced to first- and second-degree cases, or which
can be solved by a root extraction (K stands for cubo, CC for censo di censo):

Ja7 αK = N

Ja8 αK = βt

Ja9 αK = βC

Ja10 αK+βC = γt

Ja11 βC = αK+γt

Ja12 αK = βC+γt

Ja13 αCC = N

Ja14 αCC = βt

Ja15 αCC = βC

Ja16 αCC = βK

Ja17 αCC+βK = γC

Ja18 βK = αCC+γC

Ja19 αCC = βK+γC

Ja20 αCC+βC = N

As we see (whether Jacopo saw it too we cannot know, since he just presents the rules),
Ja11 (for example) can be reduced to Ja5 through division by t, and Ja20 reduces to Ja4
if we substitute C with t and in consequence CC with C. There is nothing similar in al-
Khwārizmı̄’s original text; in a sequence of borrowed problems late in Fibonacci’s
exposition of algebra something similar is presupposed [Høyrup 2022: 180–184], but we
can be absolutely confident that this was not the inspiration – not least because Fibonacci
does not take advantage of the reducibility but produces new geometric arguments.

The naming of the powers is to be taken note of. thing, censo and cubo might still
look as distinct unknowns (although their mutual relation was of course known). Naming
the fourth power censo di censi, on the other hand, shows the relation explicitly, in a way
that excludes it could be overlooked by anybody within even a “diluted al-Karajı̄” tradition.
Whether the composition was understood as a multiplication or as an “embedding” (to
be explained below) cannot be seen directly, since n2 n2 = (n2)2; but since all higher
powers were named by multiplication in Arabic algebra, as also in Italian writings for
long, the multiplicative interpretation is not to be doubted.

After an oddly located alligation problem about grain follows in the Vatican manuscript
a group of four problems which we would probably characterize as algebraic.[31] They
deal with the successive wages of the manager of a fondaco (a warehouse located abroad –
in Arabic, funduq), which are silently presupposed to grow geometrically. If the wages
are a, b, c and d, the problems are

F1 a+c = 20 , b = 8
F2 a = 15 , d = 60

F3 a+d = 90 , b+c = 60
F4 a+c = 20 , b+d = 30

Jacopo offers nothing but unexplained rules and probably did not know how his rules had
been derived; he has no recourse to algebra. None the less, it is rather obvious that the

31 Wrongly, a purist might claim. Being algebraic depends on the way a problem is solved, not on
the question. Even 3x+17 = 26 is only algebraic to the extent we follow the invitation to manipulate
the equation. If we use the double false position or trial-and-error it is not.
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background is the kind of polynomial algebra that had been developed by al-Karajı̄.

Other abbacus writings from the next decades confirm this picture while providing
it with more shades. First and most important there is a Libro di ragioni “Book of
Problems” [ed. Arrighi 1987: 13–107], as Jacopo’ Tractatus written in Montpellier but
in 1327 and normally for brevity ascribed to Paolo Gherardi. The information found in
the incipit is, however, that it is written “according to the rules and the abbacus course
made by Paolo Gherardi of Florence”, so it is plausibly written by a listener or an assistant.
To this comes that the actual manuscript is a sometimes imprecise copy [Van Egmond
1978: 162].

Beyond some scattered problems solved by means of algebra, the Libro di ragioni

contains in the end a systematic presentation of the field. Gherardi gives rules for these
cases:

Gh1 αt = N

Gh2 αC = N

Gh3 αt = βC

Gh4 αC+βt = N

Gh5 βt = αC+N

Gh6 αC = βt+N

Gh7 αK = N

Gh8 αK = √N

Gh9 αK = βt

Gh10 αK = βC

Gh11 αK = βC+γt

Gh12 αK = βt+N

Gh13 αK = βC+N

Gh14 αK = βt+γC+N

Gh15 αK+βC = γt

All rules are followed by examples. Some coincide with those of Jacopo, with or without
the same numerical parameters; others are quite different.

Gherardi does not go beyond the third degree. On the other hand, he adds some new
cases. Gh8 is solved correctly, t = 3√(√N/α)[32] and may serve to remind us that surds
did not belong to the number category. More stunning are Gh12, Gh13 and Gh14, for which
false rules are given. Since the examples lead to solutions containing non-reducible radicals,
a numerical test was not easily performed (in contrast to abbacus geometry, abbacus algebra

never makes approximations). On the other hand, the rules given for Gh12 and Gh13 are
identical, both copying that for Gh6. Anybody with insight in the matter would have seen
that the solutions to Gh12 and Gh13 can only coincide if t = C, that is (zero being mostly
not accepted as a number but only as a place-holder, and which in any case requires N =
0), t = C = 1 (which is only possible if α = β+N). We must conclude that Gherardi either
did not possess this insight or cheated.

Such false solutions survived in the abbacus environment for long, and their number
would increase. They might serve in competitions for students or positions – neither
municipal authorities not parents were likely to possess the qualifications necessary to
expose them. However, they would not have been preserved if they had not served a

32 To be precise, Gherardi gives the mistaken rule t = √(3√N/α), but the ensuing example is solved
correctly.
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purpose, that is, if the ability to solve higher algebraic problems had not been appreciated
as something noteworthy (practical use can be excluded, both because any practical test
would reveal the error and because there was no possible practical use). This created a
pull, stimulating among those who looked through the fraud a conspicuous interest in doing
better, producing in the 16th century the final break-through produced by Scipione del
Ferro, Nicolò Tartaglia and Girolamo Cardano.

An anonymous Trattato di tutta l’arte dell’abacho was written in 1334, almost certainly
in Avignon.[33] It exists in several copies, including the author’s draft version (Florence,
BNC, fond. prin. II,IX.57). The language is Tuscan, not Provençal, and the compiler is
thus another Tuscan who had gone to Provence. It contains no systematic introduction
to algebra,[34] but a number of problems are solved by means of thing and censo. They
are similar to Gherardi’s scattered problems and confirm that Jacopo, Gherardi and the
present compiler drew on the same tradition. Since nothing similar is found in earlier Italian
sources we must conclude that Jacopo and Gherardi learned their algebra in Provence,
and that the “diluted al-Karajı̄ tradition” on which they drew was thriving in the Ibero-
Provençal area; we can exclude al-Andalus, Muslim southern Spain, as the place where
they learned, since their texts contain no Arabisms).

The earliest extant abbacus manuscript produced within Italy and containing algebra
is Libro di molte ragioni d’abaco from ca 1330 (Biblioteca Statale di Lucca, Codice 1754)
(mentioned in note 18 as the outcome of a collaborative effort).[35] It contains no less
that two presentations of algebra. Both depend, directly or indirectly but in any case
strongly, either on Jacopo’s Tractatus or on a close precursor of his while drawing to a
limited extent on other material that had started to circulate (one new example corresponds,
with changed numerical parameters, to a problem found in Gherardi).

This was thus the beginning of abbacus algebra, distinct from that of al-Khwārizmı̄
though obviously related, and not at all inspired by Fibonacci. Its further broad development
is described in [Høyrup 2024]. Here, we shall now turn to the single elements that in the
end went into the new algebra of the 17th century. A short general account of the beginning
of German Coß will also be needed, but it is better inserted in Chapter II when we approach
German material for the first time.

33 The date and probably place of writing were determined by Jean Cassinet [2001]. Reasons that
the ascription to Paolo dell’abbacho must be rejected are presented in [Høyrup 2024: 215].

34 After the draft manuscript follows the beginning of a systematic exposition, but it is in a different
hand and of uncertain date. All it tells us is that it builds on the same basis as Jacopo and Gherardi.

35 See, however, p. 46 below: Biagio “il vecchio” may well have worked on algebra before 1330.
However, his kind of algebra, though independent of Jacopo, belongs to the same kind, and has
the same roots.
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Geometric proofs were given by al-Khwārizmı̄, as we have seen, and probably
introduced by him. Fibonacci came to consider them the defining core of the algebraic
art, as reflected in his reinterpretation of census as another term for square. They are absent
from the abbacus algebra tradition – the very rare appearances have come in laterally.

Dardi da Pisa

The first intrusion is found in Dardi da Pisa’s Aliabraa argibra, written in 1344,
probably in Venice.[36] This is the earliest treatise we know about from the abbacus
tradition which is dedicated exclusively to algebra; it is best known for dealing with no
less than 194 “regular” and 4 “irregular” cases.[37] The former are cases for whose
solution rules of general validity exist; all are given correctly by Dardi except two, where
he has no terms for the fifth and the seventh root (see below, p. 63); heavy use of radicals
allows Dardi to reach 194 cases. The first 16 cases do not involve radicals, but then these
follow:

Da17 N = √(αt)
Da18 αt = √N

Da19 αC = √N

Da20 N = √(CC )
Da21 αK = √N

Da22 N = √(αK)
Da23 αCC = √N

Da24 N = √(αCC )
Da25 αt = √(βt )
Da26 αC = √(βt )

Da21, as we see, coincides with Gherardi’s Gh8; Dardi thus took initial inspiration from
the existing tradition but expanded it immensely.

36 Four manuscripts are known:
– Vatican, Chigi M.VIII.170 (ca 1395, cf. [Van Egmond 1980: 211]); in most though not all

respects the best, and the one I shall use;
– a manuscript held by Arizona State University Tempe, written in Mantua in 1429; an essential

complement to the Chigi manuscript;
– Siena, Biblioteca Comunale I.VII.17; ca 1470, ed. [Franci 2001];
– Florence, Biblioteca Mediceo-Laurenziana, Ash 1199, from c. 1495. I have only seen the extract

in [Libri 1838: II, 349–356], according to which it is quite close to the Siena manuscript.

37 Full lists in modern symbolism are given by Van Egmond [1983: 402–417] as well as Raffaella
Franci [2001: 26–33]; Van Egmond also indicates the rule given by Dardi for each case in modern
symbolic language.



20 Dardi da Pisa

The “irregular cases” are of the third and fourth degree and cannot be solved by simple
root extraction or reduction to one of the six fundamental cases:

D-i1 γt+βC+αK = N,
D-i2 δt+γC+βK+αCC = N

D-i3 δt+γC+αCC = N+βK

D-i4 δt+αCC = N+γC+βK

Dardi offers rules that, as he says, are valid in particular situations only (situations which
he does not specify). These rules can be seen to have been derived from homogeneous
cases by a change of variable;[38] they were almost certainly not invented by Dardi
[Høyrup 2024: 240].

Dardi’s algebra, though going far beyond what he had inherited, thus belongs within

Figure 4

the abbacus tradition. But occasionally he betrays familiarity with the Latin school
tradition – both the way Latin was taught in grammar
school and the university philosophers’ idea of “four
causes”. He must also have seen Gerard’s translation
of al-Khwārizmı̄’s algebra or a work descending from
it, since he repeats his geometric demonstrations,
adding one corresponding to the solution to Kh5
obtained by addition (that is, the solution 7 to the
equation C+21 = 10t. Noteworthy is a change of style
in the lettering. As we see in the diagram for the first
mixed case, C+10 = 39 (Figure 4), equal areas are
shown with the identical letterings. That appears to
be Dardi’s personal style (unless it is taken from an
intermediate source which we do not know about.

38 Once we possess post-Cartesian symbolism this is easily done. For instance, the equation x3 =
a has the solution x = 3√a. If we replace x by 1+by we get the equation and solution

1+3by+3b2y2+b3y3 = a , y = (3√a–1)/b.
Without this tool, it is an impressive feat. It is possible that the inventor of these solutions did not
understand that they were not generally valid and that only Dardi realized this.
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The Florentine encyclopedias

After Dardi we have to wait until ca 1460 before geometric proofs for the mixed
algebraic cases turn up again.[39] It happens in three “abbacus encyclopedias”:
– the anonymous Libro di praticha d’aresmetricha, Vatican, Ottobon. lat. 3307

(henceforth Ottoboniano Praticha);
– the equally anonymous Trattato di praticha d’arismetricha, Florence, BNC, Palatino

573 (henceforth “Palatino Praticha”);
– Benedetto da Firenze’s Trattato di praticha d’arismetrica, Siena, Biblioteca

degl’Intronati, L.VI.47 (henceforth Benedetto’s Praticha).
All three are autographs (several incomplete copies of Benedetto’s treatise also exist).
Benedetto’s treatise is dated 1463, while the apparent dedicatee took possession of the
Palatino Praticha in April 1460, which can then be taken to be the year is was written

39 We might mention the appearance of geometric demonstrations in Giovanni Bianchini’s Latin
Flores almagesti, written from 1440 onward (I use Vatican, Vat.Lat.228, supported by Albrecht
Heeffer’s draft transcription [2015], to which he has gently given me access). Two early sections
of this mostly astronomical treatise deal with arithmetic (fols 16r–25v) and algebra (fols 25v–29r,
plus a problem collection left out in the Vatican manuscript but present in the transcription).

Bianchini, born in Bologna early in the 15th century, was active as a merchant in Venice after
graduating from an arts faculty [Federici Vescovini 1968]. In Venice he seems to have frequented
local abbacus masters (given his astronomical bent he will certainly have learned Euclidean
mathematics at the university). In Venice he was discovered by Niccolò d’Este, Marquis of Ferrara,
which led him to high posts in the finances of the Marquisate and also allowed him to dedicate
time to theoretical as well as observational astronomy.

More than half of the arithmetic of the Flores is dedicated to the arithmetic of roots and
arithmetical binomials. Here, a few geometric arguments are used (for instance, for the reduction
of √24+√6); they are evidently not those used to demonstrate the rules for solving mixed algebraic
cases.

The algebra as a whole seems according to the way the material is ordered to be an independent
composition based on memory of what Bianchini had learned from his intercourse with Venetian
abbacus masters and not a copy from some abbacus algebra (the same is probably true about the
arithmetic). It is thus a witness of average early 15th-century abacus algebra, but too distant from
it to tell us anything with certainty; there will hence be no reason to mention it in later chapters.

Bianchini’s algebra does offer some geometric proofs, inspired by those proposed by al-
Khwārizmı̄. These he can hardly have encountered when frequenting the Venetian masters, but they
are still so different (as regards numerical parameters as well as the lettering of diagrams) that he
appears to have reconstructed them from memory (demonstrating thereby his mathematical
competence) and not to have copied them from an earlier treatise. They are thus, it seems, not lateral
intrusion into the abbacus tradition (as Dardi’s proofs) but outside it. Interesting though they might
be for a portrait of Bianchini, there is thus, even on this account, no reason to go in depth with
them here.
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(according to the introduction, however, it is a new version; fictional loan documents
suggest that the first version was prepared between ca 1450 and 1454. The Ottoboniano
Praticha refers to an event which Benedetto [ed. Pieraccini 1983: 118f ] dates to 1445
as happening around 12 years ago. Combined with watermark evidence this suggests 1458
as its approximate date.

We know that these encyclopedias all come from a tradition encompassing Biagio
“il vecchio”,[40] Paolo dell’Abbacho, and Antonio de’ Mazzinghi (active from the 1330s
until the 1380s), whose works are mostly lost except for extensive quotations in the
encyclopedias (we shall come back to Biagio and Antonio). It is not excluded that these
predecessors had conserved memory of the geometric proofs. What is certain is that all
wrote algebra in the abbacus tradition we know from Jacopo and Gherardi. They might
still have shown al-Khwārizmı̄’s proofs separately – that is what the encyclopedias do.
However, this kind of Humanist philological piety belongs to the 15th rather than the 14th
century. So, what is “not excluded” remains improbable.

Closer inspection of the three encyclopedias show that their source for the proofs is
Guglielmo de Lunis’s mid-13th-century translation of al-Khwārizmı̄ (above, p. 15). Only
Benedetto [ed. Salomone 1982: 1] refers to the Arabic Aghabar translated by Guglielmo,
but terminological peculiarities (for example, the use of recuperare instead of ristorare)
show that all three use the same source for this part of their exposition. The Palatino
Praticha and Benedetto share a number of diagrams in this section, some of them not found
in Gerard’s translation, and the others with wholly different lettering. There is thus no
doubt that the background is a different translation, and there is no reason to doubt the
ascription to Guglielmo.[41]

40 “The old” Biagio – old because there was also another, younger, abbacus master called Biagio.

41 Raffaela Franci [2021: 231] claims that “an accurate reading of the text” reveals it to be that of
Gerard.

The “accurate reading” consists of confrontation of two short passages from Gerard’s translation
with what is found in the Palatino Praticha; they are indeed fairly similar (one being in Latin and
the other in Tuscan they are evidently not identical), perhaps somewhat more than would be expected
from two independent conscientious translations of the same text though certainly not more that
could happen if the Tuscan translator knew Gerard’s Latin text (and medieval translators regularly
took advantage of predecessors when producing improved versions). Franci has not compared with
the Arabic text nor with any modern translation of that text, and may therefore find the similarity
more striking than it is. Moreover, she does not observe that other parallel passages are definitely
not close to each other. She notices the presence of some “complements” in the Tuscan text but
overlooks that the letterings and orientations of shared diagrams differ, and also the use of recuperare

instead of ristorare. Her observations could suggest that Guglielmo may have known Gerard’s text,
but does not prove even this hypothesis beyond reasonable doubt.
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Pacioli

No later source I know of takes over Guglielmo’s version of the proofs. Canacci, as
mentioned in note 30, reports Guglielmo’s Arabic-Tuscan equivalences, and he even has
a couple of geometric proofs. These, however, are home-made – possibly inspired by
Benedetto, whose treatise he may have known from his teacher Giovanni del Sodo (below,
p. 38). Francesco Ghaligai, another former student of del Sodo, in [1521: 70v] also takes
over the list of equivalences with reference to Guglielmo and speaking of rechuperatione,
but he has no geometric proofs at all.

Such proofs turn up instead in Pacioli’s Summa in [1594], both in the arithmetical
part and in the geometry. First the arithmetic (fol. 145v and onward). Here it is obvious
that Pacioli first takes over the idea of geometric proofs. He begins by proving the rule
for things made equal to censi, which is of course easy but not to be found in any of his
possible sources. After that the inspiration from the Liber abbaci is indubitable. Firstly,
the composite cases are dealt with in the same characteristic order; secondly, the lettering
of diagrams is the same. Thirdly, a first proof for the first composite case (as usually,
C+10t = 39) follows Fibonacci’s otherwise unique synthetic approach. In the end, however,
Pacioli adds a reference to Elements II.4 as “proof of the proof”. A second proof of the
same case is similarly borrowed from Fibonacci, and here Pacioli adds the observation
that Elements II.6 is used. Corresponding Euclidean references are added to the proofs
of the other mixed cases.

The corresponding proofs in the geometric part (fol. 16r onward) depend in a similar
way on Fibonacci’s Pratica geometrie [ed. Boncompagni 1862: 59]. Details can be omitted.

Cardano

It is worth taking note, instead, that with the exception of the comparatively
uninfluential Ghaligai, 16th-century authors did not know Benedetto nor the other Florentine
encyclopedias. What they knew was Pacioli, whose book had been printed, perhaps in
2000 copies [Sangster 2007], all of which were sold (in 1523 the same printer produced
a second edition). Cardano thus knew about the possibility to provide geometric proofs
for the basic algebraic cases from Pacioli. Certainly, like not a few contemporaries he
loved to stand on Pacioli’s shoulders while kicking his nose, so he would not confess the
inspiration, and he would also change the numerical parameters – using as his first example
in the Ars magna [1545: 9v] C+6t = 91 – but a reference to Elements II seems to betray
him. He has read more, however. While he says correctly that the proof in question differs
from that of “Mahumete” (the name by which Gerard identifies al-Khwārizmı̄), an ensuing
proof for the case C = 6t+16 takes over Gerard’s diagram [ed. Hughes 1986: 240].[42]

42 Cardano’s very introduction also refers to “Mahomete” as well as Fibonacci, and on fol. 11v he
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These geometric proofs play no important direct role in the Ars magna. Cardano’s
own algebra, like that of his predecessors, is in the abbacus tradition albeit with some
Euclidean condiments. However, when dealing with “the second unknown quantity
multiplied”, a new topic (fol. 23 onward), arguments become geometric again.

Indirectly, moreover, the geometric proofs not only entered: they may have been
important in his solution of the third-degree equations. Once Tartaglia had divulged the
solution to the equations K+t = N and K = t+N, Cardano will immediately have recognized
that the solutions were structurally similar to those expressing the sides of a rectangle whose
area is given together with the sum of or the difference between the sides (and their
relations to Elements II.5 and 6) – as expressed on fol. 16r, “when, however, I understood
that the rule which Tartaglia had divulged to me had been found by him by a geometric
demonstration”. Of course, Cardano cannot have known how Tartaglia discovered the
solutions, but he here presupposes Tartaglia’s way to have been the same as his own, which
was thus exactly by geometric demonstration.[43]

In the distant-future-perfect perspective we may certainly see Pacioli’s return to
Fibonacci’s geometric proofs as regressive – after all, abbacus algebra had developed to
a point where proofs by means of polynomial algebra should have been possible. In the
perspective of the closer future, however, things are turned upside-down. Even if we leave
aside Leopold von Ranke’s apparently more modest question about “how things really
were” (as any serious historian will know, a no less difficult question and actually a haughty
aim[44]) and just ask from the point of view of later times, we still need to decide which

later time, and the answer depends on that choice.

states to have taken over two problems from the former.

43 A hint (no more) that Tartaglia at least knew this geometric way is contained in a letter from 1539
reproduced in [Tartaglia 1546: 114v–115v]. Through a certain bookseller Zuanantonio, Cardano had
asked for some of Tartaglia’s problems with their particular solutions. Tartaglia refused, foreseeing
that Cardano would then be able to reconstruct the rule.

44 In von Ranke’s words [1824: vf ]:

History has often been given the office to judge the past and to teach the present for the
benefit of the future. The present essay does not take on so distinguished offices; it only
intends to show wie es eigentlich gewesen.

That aim occupied the following 50 years of von Ranke’s life. But still, as he says when starting
this work in 1824, this first book of his (and all the others that followed), tells “nur Geschichten,
nicht die Geschichte” – “only [partial] histories, not History”.
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Geometry, as we shall see in Chapter VI, was to play an all-decisive role in the creation
of the new algebra. However, the traditional geometric proofs – based on square-grid
geometry and at times justified by references to Elements II – left the scene after having
served Cardano.

So, let us turn to the properly algebraic topics – and first to the way to conceive and
speak about the powers of the unknown. This will also allow us to introduce the algebraic
writings that will be discussed under various perspectives in the following chapters.

“Powers”, used in this sense, is strictly speaking foreign to most of the epoch we
consider – it seems to have been introduced stepwise by Viète – more on this on p. 63.
However, if we want to give a name to what we are doing when tracing the gradual
emergence of the concept during a period where it did not yet exist and was not even
sought for, there is no convenient way to eschew the seeming anachronism.

Abbacus algebra

Jacopo, as said above (p. 16), operates with cosa, censo, cubo and censi di censi, and
his understanding of the last of these is certainly multiplicative. The same can be said
about Gherardi, the Trattato di tutta l’arte and the Libro di molti ragioni (and many other
abbacus writings from the later 14th and even the 15th century, which there will be no
reason to mention).

The first evidence of conceptual expansion is found in the di-Davizzo fragment. As
told on p. 13, it contains an introduction to algebra inserted in the manuscript Vat. Lat.
10488 from 1424. This latter manuscript is written in several hands, sometimes changing
in the middle of a page, and sometimes (e.g., fol. 35r ) expressing personal opinions about
its mathematics; we may conclude that it is the outcome of a planned collaborative effort,
and that those who wrote it were mathematically competent. The best guess is that it was
produced by an abbacus master and his assistants or apprentices, or by the latter alone.[45]

One thing we learn from the fragment is the names of powers:

45 According to Van Egmond [1980: 230] it was written in Venice. He offers no evidence or
arguments, and apart from an occasional use of zenso instead of censo (both in the same hand on
fols 35r and 38r ) and of chaxa instead of casa (both spellings in two consecutive lines on fol. 57v)
the language is Tuscan and certainly not Venetian. Since di Davizzo was from Florence and his
manuscript likely to have been conserved there, Florence was probably the place where the
manuscripts was composed. The inconsistent spellings may have resulted from use of a source written
in a northern dialect.
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thing – censo – cubo – censo di censo – cubo di censo (or censo di cubo) – cubo

di cubo – ... – censo di censo di censo – ... – cubo di cubo di cubo di cubo.[46]

This merely confirms that the naming was really multiplicative. More interesting is
an attempt to give names to what we would speak of as negative powers, for instance,
the outcome of a division of censo di censo by cubo di cubo. This outcome is claimed
to be root; in general, what we might express as thing–n is stated to be “nth root”, with
the exception that thing–1 is identified with number.

Di Davizzo evidently does not speak of an “nth root”. Not only the notion of numbered
“powers” was in the future, so were also the ideas of numerical exponents and numbered
roots. His “roots” are composed multiplicatively from “roots” and “cube roots”, similarly
to the composition of positive powers from censo and cubo. Therefore, “dividing number
by cubo di cubo gives cube root of cube root”.

This would certainly not work if tried in calculational practice. Roots are by nature
functions;[47] the cube root of 512 is 8, and therefore the cube root of the cube root of
512 is 2, the 9th root. But di Davizzo does not use his (substitutes for) negative powers
in any kind of practice, his is a kind of experimental extrapolation not submitted to
experiment.

Al-Karajı̄, in the Fakhrı̄, has a fully developed and operational understanding of
negative powers, expressed as the corresponding “part” ( juz ) – see [Woepcke 1853: 49].
Whether di Davizzo has known of any descendant of that and reconstructs badly or is fully
on his own we cannot know. Later in the abbacus tradition, as we shall see, analogues
of al-Karajı̄’s notation turn up, but the idea is too close at hand to make this an argument
for a borrowing.

Dardi da Pisa

Dardi reaches his impressive number of cases by means, not of higher powers but
of radicals; his cases only speak of censo (spelled the Venetian way, as çenso), cubo and
censo di censo. However, when deriving the rules he occasionally has to operates with
higher powers. Thus, in #93, “number and root of censi di censo equal to censi di censi”,
the reduction gives rise to an eighth power of the thing, expressed multiplicatively as censo

di censo di censo di censo. This is thus fully in agreement with the predecessors and
uninteresting.

Interesting are instead his two erroneous solutions. In #177, a cube root is taken instead
of a fifth root, and in #179 the root of the root is taken instead of the seventh root. As
argued by Van Egmond [1983: 417], Dardi has no way to express these roots (Van Egmond

46 These names are not given in an ordered list, they have to be read out from a sequence of rules,
for which reason the names for the 7th, 9th, 10th and 11t powers are missing.

47 Our concept, of course, going back to Johann Bernoulli, as we remember from note 6.
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actually says “powers”): in contrast to di Davizzo he knows that the multiplicative
terminology for the powers cannot be transferred to the roots.

Antonio de’ Mazzinghi

After careful weighing of the available incongruous evidence, Elisabetta Ulivi [1996]
reaches the conclusion that Antonio de’ Mazzinghi was born between 1350 and 1355 and
probably died between 1385 and 1386. He appears to have been a prolific mathematical
writer, but most of his works including a Gran trattato have been lost; a copy of his
Fioretti (“small flowers”), however, has been conserved in Benedetto da Firenze’s
monumental Praticha (on which much more later, in this as well as following
chapters)[48]. It appears to be complete, and it is written with the express intention to
“speak like master Antonio”.[49] There is clear evidence in the text that what Benedetto
renders is an unpolished work in progress – see [Høyrup 2024: 248].

Antonio was keenly interested in continued proportions and is supposed to have
produced the first tables of compound interest. He also solves such problems as “to find
the yearly interest equivalent to an interest of 20 percent made up every 9 months” and
“to find the interest over 8 months that is equivalent to a yearly interest of 4 denari per
lira and month” [ed. Arrighi 1967a: 35–30]. He thus knew extremely well how to operate
with roots, and shows how to get around Dardi’s stumbling-stone – namely by extracting
in the second of these problems a fifth root called radice relata, (with the synonym radice

raportata – both seem to mean “reported root”). Antonio does not claim paternity rights
and may thus have taken over the terms from some predecessor unknown to us. On the
other hand he points out that the problem had until then been considered impossible, which
speaks in favour of a new introduction.

The innovation has a somewhat paradoxical impact on Antonio’s naming of the
algebraic powers: the Palatino Praticha, fol. 399r [ed. Arrighi 2004/1967: 191] quotes
Antonio for this explanation of the powers:

Thing is here a hidden quantity; censo is the square of the said thing; cubo is the
multiplication of the thing in the censo; censo di censo is the square of the censo [quadrato

del censo], or the multiplication of the thing in the cubo. And observe that the terms of
algebra are all in continued proportion; such as: thing, censo, cubo, censo di censo, cubo

relato, cubo di cubo, etc.

The sixth power, as we see, is produced by multiplication; the fifth power could have been
so too, as censo di cubo or cubo di censo. It appears that the new name for the fifth root
has called forth a corresponding naming of the fifth power, but at the moment without
general consequences being drawn.

48 Fols 451r–474v, ed. [Arrighi 1967a]. Many of the problems are also conserved in the two other
encyclopedias (see above, p. 21), but not with Benedetto’s philological care.

49 Fol. 460r, ed. [Arrighi 1967a: 47]; cf. below, note 82.
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The Florentine Tratato sopra l’arte della arismetricha

The manuscript Florence, BNC, Fondo princ. II.V.152, Tratato sopra l’arte della

arismeticha, is an extensive abbacus treatise, a large part of which is dedicated to algebra;
this part was edited in [Franci & Pancanti 1988]. According to watermarks and to fictitious
loan contracts it was written in the 1390s by an anonymous Florentine [Franci & Pancanti
1988: 1]. Attempts to ascribe it to Antonio can be safely disregarded; their sole foundation
is the assumption that there can have been only one eminent algebraist in Florence at the
time. Antonio, however, was probably dead when this treatise was written, and many details
of mathematical styles and terminologies of the two differ.

One of these differences has to do with the naming of algebraic powers. These begin
with thing, censo, cubo, censo di censo – so far nothing remarkable. The fifth power is
cubo di censo, a multiplicative composition. The sixth, in contrast, is censo di cubo,
produced by embedding, as censo(cubo), corresponding to a modern (x3)2, where censo

is a function.[50]

So far this confirms what we might surmise from Antonio’s inconsistent naming: that
we are in the midst of a spontaneous conceptual phase transition, not really understood
and certainly not systematically worked out by the participants.

But this Tratato offers more, “false trail” rather than mere “exploration”. About the
production of the second power it is said that

Having seen what a thing means, having shown that it is a position, we come to its
multiplication: we should know that a thing multiplied in itself makes a root which is called
a censo, so that it is the same to say a censo as to say a quantity which has a root,
engendered from a number multiplied by itself.

This is unobjectionable from a modern point of view. What follows is not. A thing

multiplied by a censo gives

cubo, that is a cube root, so that if you should say that if the thing should produce 6, then
the censo will produce 36, that is, the square of the thing, the cube will produce 216 [...].
So it is the same to say cubo as to say a cube root of a given number.

50 From a Piagetian point of view we may observe that it is probably easier to be familiar with the
taking of the second power than with that of a third. As Piaget points out, it is easier to imagine
picking a bouquet of roses than keeping together mentally a flock of swallows. In consequence,
average children at the age of six say without hesitation that there must be more flowers than roses
in the garden – while it may take years before they are equally convinced a priori that there must
be more birds than swallows flying around. My experience with mathematics teaching, until
engineering school and university freshman level in mathematics, confirms this to abundance. Once
the independent variable is changed from t to the x they know from high school, the engineering
students grasp immediately, and once the university students get a translation of a proportionality
problem into a question about potatoes and money, they do too.
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This conflation of power and root name goes on.

cubo di censo [...] will be as much as saying a root which is engendered by a squared
quantity multiplied against a cubed quantity; as it would be to say, if the thing were worth
6, the censo is worth 36, and the cubo will be worth 216, and the multiplication that is
engendered by the 36 against the 216 will be 7776, you will thus say that if the thing were
worth 6, then the cubo di censo will be worth 7776, and there are some that call this root
the radice relata. So it is the same to say cubo di censo as to say radice relata of a
quantity.

The author was a brilliant algebraist, as demonstrated by his handling of polynomial algebra
[Høyrup 2024: 262f ], and what to us looks as confusion did not disturb him; he understood
to perfection what was in play, as shown by this passage:

If you want to multiply a thing against a cubo di censo, it will be a censo di cubo, which
means as much as to say, taken the root of some quantity, and of this quantity taken its
cube root, as it would be if the thing were worth 3, the censo will be worth 9, the cubo

will be worth 27, the censo di censo will be worth 81, the cubo di censo will be worth
243, the censo di cubo will be worth 729, because, taken the root of 729 it will be 27,
whose cube root is 3, and that equals the value of the thing.

There is hardly any connection to di Davizzo’s use of “roots” as negative powers. On the
other hand it seems almost certain that the present “root names” for powers influenced
the rest of the 15th century; in what way, however, is difficult to know. It is also doubtful
that the present writer invented them. They may, like his reference to the “related root”
as a term used by “some”, point to something which the writer knows about from his
environment.

The Florentine encyclopedias

As told above (pp. 21 and 22), the three encyclopedias all belong within a broad
tradition going back to Biagio “il vecchio”, and all three draw for the geometric proofs
on Guglielmo de Lunis’s translation of al-Khwārizmı̄’s algebra. Close inspection of the
texts show, however, that they have much more in common (the analysis can be found
in [Høyrup 2024]). According to their own words, the compilers of the Ottoboniano and
the Palatino Pratiche are both students of Domenico d’Agostino Cegia, a mathematical
dilettante of standing and no abbacus teacher, generally known as il Vaiaio, “the fur
dealer” – a reference to the profession of the family before protection by Lorenzo il
Magnifico allowed it to improve its already substantial wealth and social standing [Ristori
1979; Ulivi 2002: 49f ]. Their treatises can also be seen on the whole to be (sometimes
free) redactions based on the same model – it is a plausible but unprovable guess that this
model was put at their disposition by il vaiaio.[51] Benedetto can be seen also to have

51 All three encyclopedias are indeed prestige objects dedicated to some protector-“friend” – the
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known this model, or some very close kin, even though his own work goes far beyond
it.[52]

All the more interesting is that the three do not deal with the algebraic powers in the
same way (evidence that the situation remained in flux even in a closely knit Florentine
environment around 1460.

The Ottoboniano Praticha (fol. 304r–v) offers this sequence (not as a sequence but
within explanations of their products):[53]

dramme (or number) – thing – censo – cubo – censo di censo – censo di

cubo (“the same as cubo di censo”) – cubo di cubo

“You may proceed with these multiplying infinitely”. This is followed by divisions, first
those leading to positive powers, as “dividing censi by things gives things”, etc., then those
leading to negative powers – for example (the coefficients 6 and 48 are used throughout
in the examples illustrating divisions – those illustrating the multiplications use the
corresponding 6 and 8),

dividing things by censi gives a fraction denominated by censo, as dividing 48 things by

6 censi gives this fraction, that is,
8 things

1 censo

Later (fol. 305r ) it is pointed out that can be reduced to .8 things

1 censo

8 dramme

1 thing

The system for naming is thus purely multiplicative – there is nothing like the
hesitations of the Tratato. The way to express negative powers is similar to that of al-
Karajı̄, we observe (with the difference that al-Karajı̄ makes use of the word “part” and
not of the fraction line, which was only invented in the Maghreb in the 12th century).

What we find on fol. 372r in Benedetto’s Praticha is clearly related: his examples
for multiplications and divisions of powers use the same coefficients. But his powers are
different:

thing – censo – cubo – censo di censo – cubo relato – cubo di cubo

– that is, Antonio’s system, as also quoted in the Palatino praticha. The dramma has

Palatino Praticha and that of Benedetto to members of the absolute top of the Florentine commercial
elite (the dedicatee of the Ottoboniano Praticha is not identified). Putting such a model at the
disposition of his students would thus have been a way for the Vaiaio to further their career.

52 We are here looking at what they do in their own expositions of algebra (which is of abbacus
type), not in the introduction they borrow from Guglielmo, which is there as a token of Humanist
piety (as both Benedetto and the Palatino writer explain).

53 dramme (dragmas) may be inspired by the Guglielmo extract – this use of a “unit” for pure
numbers is rare in abbacus algebra but abounds in Guglielmo’s text (more than in Gerard’s
translation).
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disappeared,[54] and we find the same exception from the multiplicative formation as
in Antonio. In the divisions, Benedetto differs from the Ottoboniano writer by presenting
the result in reduced form immediately.

The Palatino Praticha, from which we know that this is Antonio’s system (above,
p. 27), also uses it, and similarly shows the outcome of divisions that lead to positive as
well as well as negative powers. Its coefficients are different from those of Benedetto and
the Ottoboniano writer (and changing); since the other two agree, the Palatino writer must
be the one who is creative (on this modest level) in his relation to the model.

The Ottoboniano writer must also have been creative in his relation to the model used
by all three – namely by discarding the inconsistent deviation from the multiplicative
naming principle and returning to what he knows from the tradition.

An aside on the regula recta

In chapter 12 of the Liber abbaci [ed. Giusti 2020: 324], Fibonacci presents this give-
and-take problem: A first man (A) asks from a second (B) 7 δ [denarii], saying that then
he shall have five times as much as the second has. The second asks for 5 δ, and then
he shall have seven times as much as the first. A first solution makes use of a line diagram.
As an alternative, Fibonacci proposes a solution by means of the regula recta, the “direct
rule”, which “is used by the Arabs and is very praiseworthy”. Here, B is posited to possess
a thing (res ) and 7 δ. After having received 7 δ, A therefore has 5 things, at first therefore
5 things less 7 δ. If instead B gets 5 δ from A, he shall have a thing and 12 δ, while A
shall have 5 things less 12 δ. Therefore, a thing and 12 δ equals 7 times 5 things less
12 δ – etc.

To us, this is first-degree algebra with a single unknown. Fibonacci, however, does
not conflate it with his notion of al-jabr wa’l-muqābalah (fundamentally a second-degree
technique), and indeed introduces the latter technique only in chapter 15 part 3.

As discovered by Enrico Giusti [2017], a single manuscript of the Liber abbaci contains
an early version of chapter 12, almost certainly the 1202 version. The present alternative
solution is not in this early version of the chapter, but other references to the regula recta

are – including some where the term covers first-degree algebra with several unknowns
(more on this below, p. 78). Fibonacci appears at first to have taken over an Arabic method
in 1202, and then when preparing the 1228 edition to have discovered the need for an
explanation (this is documented in detail in [Høyrup 2024: 86–89]).

54 In the beginning of the extract from Guglielmo (fol. 358r ), on the other hand, there is an interesting
observations about the dramma – likely to have been added by Benedetto, since it is absent from
the corresponding passage in the Palatino Praticha (fol. 391r ). Benedetto explains that “according
to quantity, the dramma is tiny, as is the point with regard to the line”. Benedetto appears to have
derived a general dimensional understanding of the powers on the basis of al-Khwārizmı̄’s text –
but he wisely abstains from using it in his own algebra.
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There is a priori no reason to assume that Fibonacci should dress up an invention
of his own as if it were Arabic.[55] But we have more direct evidence for the correctness
of his claim. In the Liber augmenti et diminutionis ([ed. Libri 1838: I, 304–371; ed. Moyon
2019b]) it is regularly used as an alternative to the double false position; in that work the
name given to it is simply regula while the unknown is called census – translating Arabic
māl and understood according to the original meaning “possession” or “amount of money”.

As an aside to the aside we may take into account that in 1202 Fibonacci appears to
have mainly presented material he had encountered in oral interaction as a Mediterranean
merchant; that is told in his prologue, and confirmed by analysis of his text. With the

exception of the algebra in chapter 15, however (cf. note 15 – detailed discussion with
documentation in [Høyrup 2021b]). Merchants’ mathematics, even when recreational and
even when presented by teachers of future merchants, will normally be of the first
degree.[56] That is, what Fibonacci presents as regula recta solution will have been shown
to him by his commercial partners when they entertained each other with mathematical
questions. They will not have been familiar with al-jabr wa’l-muqābalah, which was taught
in the madrasah and not in the analogues of the abbacus schools; that technique Fibonacci
therefore had to learn from books.

During the following two centuries, two known sources employ the technique. Firstly,
the manuscript Paris, BN, Latin 15120, a modest 13th-century collection of mathematical
problems, much of which is borrowed verbatim from the Liber augmenti et diminutionis –
see [Sesiano 2000: 78–82]. Like its source it speaks simply of regula, but it changes the
name of the unknown to res, “thing”. Secondly, inspired by Fibonacci but sometimes going
beyond him, Jean de Murs applies the method in the Quadripartitum numerorum under
the name ars rei, “the art of the thing” [ed. L’Huillier 1990: 418, 420f, 436, 438, 456].

In known abbacus writings we find no references to the method before the three
encyclopedias, all of which use it (as does Benedetto’s Tractato d’abbacho, probably later
than his Pratica d’arismetricha). They speak of it as modo retto and use quantità for the
unknown (or for the primary unknown when several unknowns are involved). Striking
is, however, a passage in the Ottoboniano Pratica (fol. 28v); the author refers to Fibonacci’s
understanding of the method and takes over his reference to its Arabic origin. But he also
speaks about its use by “all the others who understand”, and even points out that “some

55 Not that such a manoeuvre is in itself unthinkable – we may consider Paracelsus’s alkahest,
certainly his own idea and no borrowing from Arabic alchemy in spite of its Arabic attire. A close
analysis of Fibonacci’s working methods, however, excludes it – see [Høyrup 2021b].

56 Normally – there are exceptions. Most important of these are the riddles about a monetary
possession and its square root which became the defining high point for al-jabr, cf. above, p. 5.
The most sophisticated abbacus teachers also excelled in the transformation of originally linear
recreational problem types into higher-degree questions by introducing products and square roots
(above, p. 15). All of these, however, are exceptions.
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say it is one of the exemplary modes of algebra”. We shall more to say about this when
considering the use of several unknowns (p. 129), and for the moment just make three
observations.

Firstly, the method must have been sufficiently practised in earlier abbacus culture
to have kindled discussions concerning its status.

Secondly (anticipating the following chapter), the quantità is regularly abbreviated
q in marginal calculations. There was obviously no cognitive inability blocking the
introduction of new symbolic abbreviations; the abbacus masters (at least those at the level
of the writers we look at for the moment) were fully able to do that when they found it

adequate. Writing for the audience of their own epoch and not for the historians or
mathematicians of the 21st century, their choices do not always coincide with ours.

Thirdly – inviting a similar conclusion – in one linear problem, solved however by
a procedure that leads to a reducible second-degree equation, the Ottoboniano writer (fol.
174v in the margin, fol. 175r in the running text) uses quantità di quantità about the square
of the quantità (an emulation of censo di censo). This appears to be unique in the corpus
as we know it: the modo retto is only used for linear questions. But again, once the need
was there the writer – be it the Ottoboniano writer himself, be it a predecessor from whom
he is copying – had no difficulty in inventing.

The end and aftermath of the abbacus tradition

In as far as algebra is concerned, the abbacus encyclopedias may be regarded as the
high point of the abbacus tradition. After 1465 we encounter new experimentation but
no establishment of a new consensus.

A Modena manuscript

The three encyclopedias may have been conservative in honour of the tradition to which
they are outspokenly proud to belong. Materials from the next decades present us with
new understandings, and they may well continue work which, unknown to us, was already
going on in mid-century or even before.

Let us first look at the manuscript Modena, Bibl. Estense, ital. 578. It was probably
written around 1485 ([Van Egmond 1980: 171], based on watermarks), and according to
the orthography in the north – it uses zonzi and mazore where Tuscan would have giongi

and maggiore. Van Egmond [1986: 23] observes that the manuscript is a copy. Part of
his evidence is mistaken, but only part – see [Høyrup 2010: 41 n. 75]; the original thus
precedes 1485, we do not know by how much. [Van Egmond 1986] contains an edition
of the sections of the manuscript that deal with roots and with algebra, which however
leaves out most of what is needed for the purpose of the present book; my presentation
therefore refers to the manuscript.

Fol. 5r–v lists the algebraic powers twice, first together with their appurtenant gradi,
“degrees” (meaning steps upwards, for instance on a staircase), corresponding to our
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exponents. The naming is mixed, in part multiplicative, in part made by embedding (gradi

in parenthesis here),[57]

number (0)
cossa (1)
zenso (2)
qubo (3)
zenso di zenso (4)

cossa di zenzo di zenso (5)
zenso di qubo (6)
cossa di zenso di qubo (7)
zenso di zenso di zenso (8)
cubo di qubo (9)

The second list (using the abbreviations introduced in the first list, here expanded)
explains the “signification” in terms of root names:

cosa, its signification is that which you find
zenso, its signification is the root of that [which you find]
qubo, its signification is the cube root of that
zenso di zenso, its signification is the root of the root of that
cosa di zenso di zenso, its signification is its root of that
zenso di cubo, its signification is its root of the cube root of that
cosa di zenso di qubo, its signification is the 7th root of that
zenso di zenso di zenso, its signification is the root of the root of the root of that
qubo di qubo, its signification is the cube root of the cube root of that

Given the use of a 7th root, in the manuscript 7a, it is a reasonable assumption that the
grammatically problematic “is its” (e la sua) in the fifth line is a copying error for e la

5a, “is the 5th, which in the ductus of the manuscript (and probably in that of the original)
would look fairly similar. The equally problematic “its” in the next line could then be a
set-off.

In any case we see that the writer does not know or at least does not employ the relato

usage. We also see, from the reference to a 7th root but also by the way the 6th and the
9th root are expressed, that the writer is aware that roots cannot be produced
multiplicatively – his roots are unambiguously functions, in spite of the less systematic
expression of the powers.

As later Andreas Alexander and Christoph Rudolff (below, pp. 40 and 41, respectively),
the present writer has a systematic exposition of how equations can be shown by means
of reduction to be equivalent – first (in our usual abbreviation) the equivalence of N+βt =
αC with Nt+βC = αK, and so forth. For this, the namings and significations would have
been of scant help, understanding would have asked for active thought. However, the gradi,
though not spoken of here, will have been useful, allowing automatization (as we know
from our own exponents).

In spite of sharing the idea of “root names” with the Florentine Tratato, the text
certainly does not belong within its direct succession.

57 Since the spellings determine the abbreviations that are used (to be discussed in the next chapter),
I shall deviate from my usual principle and render the actual orthography.
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Nicolas Chuquet and Étienne de la Roche

Certainly outside this succession, though part of the abbacus tradition, falls Nicolas
Chuquet’s Triparty en la science des nombres, written in Lyon in 1484 (Paris, Bibliothèque
Nationale de France, Français 1346, ed. [Marre 1881]).

Chuquet [ed. Marre 1881: 299] presents himself as Parisian and Bachelier en médecine.
He must thus have gone through first the Faculty of Arts and next that of Medicine there
before settling in Lyon, the financial capital of France – presumably a profitable location
for a teacher of practical arithmetic.

The manuscript goes well beyond what would serve a paying public, however. Chuquet
has strong mathematical ambitions and opinions, and a level of mathematical competence
justifying them. For now his naming by means of exponents is of interest. For roots, he
uses provided with an ordinal written superscript to the right (fol. 45v, ed. [Marre 1881:
103]). The première racine (“first root”) of 12 is thus 12, and it is written 1, “and so
on for all the other numbers”. The square root is thus 2, the cube root 3, etc.

Chuquet’s terms for the sequence of algebraic powers (fol. 92v, ed. [Marre 1881: 163]
is

nombre – premier – second – tiers – ...

Accordingly, Chuquet speaks of algebra as rigle des premiers.
When used (fol. 95r, ed. [Marre 1881: 165]), the powers are denoted by exponents –

and nothing but. Instead of 12t Chuquet thus writes 121 (actually .12.1, in agreement with
the habit to set off numbers from the letters of the text by points, which makes the notation
more transparent). 120 is simply the number 12, and multiplication of 21 by 21 gives 42.
As we see, Chuquet draws full advantage of the notation.

A single manuscript of the Triparty has survived – not the autograph but a professional
copy [Itard 1971: 272]. This copy was annotated by Étienne de la Roche and heavily used
by him for his Arismethique nouvellement composée in [1520].

De la Roche took over the exponent notation for roots, but he did not possess Chuquet’s
systematic spirit. He drops the idea of a 1, and writes the square root alternatingly as

or 2; for the cube root he proposes either or 3, and for the fourth root either
or 4 [de la Roche 1520: 29v]; only 5, 6 and 7 are not provided with alternatives.

On fol. 42r, de la Roche refers to Chuquet and to his règle des premiers, adding that
“some nations call it algebra and some almucabala”. De la Roche’s own heading is règle

de la chose, “rule of the thing”. The exponent notation is shown on this page but afterwards
dropped.

Since nobody else appears to have taken note of Chuquet’s manuscript before Aristide
Marre discovered it in the Bibliothèque Nationale, Chuquet’s notation ended up having
no influence in later times.
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Pacioli and Pacioli

Thus was not the fate of Pacioli’s Summa de Arithmetica Geometria Proportioni et

Proportionalita, printed in [1494], with a print run that may have been around 2000 (above,
p. 23).

However, before we consider this magnum opus we shall have a look at an earlier
work from his hand, whose fate was not too different from that of the Triparty.

Pacioli was born between 1446 and 1448 in Borgo Sansepolcro (some 25 kilometres
north-east of Arezzo) in a peasant family [di Teodoro 2014]. We know nothing about his
mathematical upbringing, but he hardly went through an abbacus school. The suggestion
that he was taught by Piero della Francesca, from the same city, remains a hypothesis.
Around 1465, in any case, he moved to Venice, where he was the tutor of the sons of
the merchant Antonio Rompiasi while also participating in the trading business; he also
followed lectures at the Scuola di Rialto, at the level of an Arts Faculty, which indicates
that he must already have acquired basic mathematical competence. In 1470–71 he was
the guest of Leon Battista Alberti in Rome.

He was apparently never an ordinary abbacus master, but he taught abbacus-type
mathematics repeatedly at the municipal Studio of Perugia, at a course connected rather
to its Arts and Medicine than to its Law Faculty.[58] Here he produced a bulky manuscript,
known from its incipit (and dedication) as Suis carissimis disciplis, “to his dear
students”.[59]

A systematic presentation of algebra has been lost from the manuscript, but we learn
the names used for roots and powers in other parts of the manuscript. On fol. 313r [ed.
Calzoni & Gavazzoni 1996: 545f ] we find the following roots (there is no complete list)

– cuba (also written q) – – prima relata – [...] – seconda relata

As we shall learn from the Summa, the seconda relata is the seventh root. The idea of
multiplicative composition of roots has thus been left definitively behind.

At an earlier point (fol. 129v, ed. [Calzoni & Gavazzoni 1996: 186]), however, we
find this sequence in the discussion of a problem about compound interest:

– cuba – – prima relata – cuba de cuba – de de cuba –
de cuba de cuba – cuba de cuba de cuba – de de cuba de cuba

Apart from the prima relata a “perfect” (and thus nonsensical) multiplicative composi-
tion. In which place (if not in both) Pacioli copies without thinking is difficult to know.

58 [Rashdall 1936: II, 40–43]. Ulivi [2017: 6] offers a list of teachers of this course from 1406 to
1483.

59 Vatican, Vat.Lat. 3129. One need not be a graphologist to derive from the writing that Pacioli
was a personality sui generis and to be grateful to Guiseppe Calzoni and Gianfranco Cavazzoni
for their edition [1996].
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Both systems appear in any case to have been around.
The names for the powers are hidden within problems and mostly abbreviated (see

the next chapter). Only interspersed commentaries allow us to identify them:

cosa – censo – cubo – censo di censo – primo relato – censo di cubo – secondo relato

This system is not multiplicative but indubitably made by embedding, and thus corresponds
to the second naming of roots (which also precedes it).

The Summa contains several lists indicating the names of powers and roots. The first,
in the margin of fol. 67v, is accompanied by the observations that tante terre, tante usanze

“as many regions, so many usages”, and tot capita: tot sensus, “as many heads, so many
opinions”. It indicates a new version of the root names, abbreviations (on which more
in the next chapter) and full names for the powers:

1a

2a

3a

4a

5a

6a

7a

8a

9a

10a

11a

[...]
29a

30a

no

co
ce
cu
ce.ce
po ro

ce.cu
2oro

ce.ce.ce
cu.cu
ce.po.ro

[...]
ce.ce.2oro

[9o] ro

numero

cosa

censo

cubo

censo de censo

primo relato

censo de cubo e anche cubo de censo

secundo relato

censo de censo de censo

cubo de cubo

censo de primo relato

[...]
censo de censo de secundo relato

nono relato

As we see, the names are now created by embedding, with the consequence that all powers
that cannot be composed in this way from lower powers now become numbered relati;
it is the complete version of the system that can be dug out from Suis carissimis and can
be presumed to have been present in the lost algebra presentation of that manuscript (with
different abbreviations, however, and not necessarily with appurtenant root names).

The second list (fol. 143r–v) is a scheme showing how the “30 gradi of the algebraic
caratteri” are brought forth as products. It identifies these gradi (also called dignità ...
“since it is customary to call the said caratteri thus) (using both names and roots names,
and mixing into one of the columns the corresponding powers of 2. We learn from this
that Pacioli’s contemporaries had a general term for “powers”, namely dignità – Pacioli
using also “characters”; moreover, that Pacioli shares the notion of gradi with the Modena
manuscript but counts “number” as the first of these steps (meaning that they are not our
exponents but correspond to the numbering of the root names).

All in all a perfect illustration of the adage that “as many heads, so many opinions”.
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del Sodo

Further illustration is offered by Pacioli’s older contemporary del Sodo. According
to [Ulivi 2017] del Sodo was born around 1420. After having been engaged in commercial
activities he appears to have taken up teaching in rather mature age – Benedetto does not
mention him in 1463 in a list of abbacus teachers, even though del Sodo seems to have
been somehow connected to the vaiaio. In 1480 he had an exchange with Pacioli, mentioned
by the latter. He seems to have taught until 1503 or even 1505, and died between late
1510 and early 1511.

No writing coming directly from del Sodo’s hand is known, but his idiosyncratic names
and symbols for the powers have been transmitted by his former students (above, note
30 and following text). The presentation in Canacci’s Ragionamenti d’algebra [ed. Procissi
1954: 432f ] is marred by inconsistencies], while the way the system is reported in
Ghaligai’s Summa de arithmetica [1521: 71r–v] is consistent and thus probably to be relied
upon. The sequence of powers is

numero – cosa – censo – cubo – censo di censo – relato – cubo di censo –

pronicho – censo di censo di censo – cubo di cubo – relato di censo – tromico –

cubo di censo di censo – dromico – pronico di censo – cubo di relato

The composition is made by embedding, and thus analogous to Pacioli’s system in the
Summa. The unique naming of those powers that cannot be composed from lower powers
can be taken as evidence that the definitive acceptance of naming by embedding in the
later 15th century gave rise to free experimentation in attempts to solve the problems
inherent in the new system. The singular glyphs[60] used as abbreviations (see next
chapter) support this interpretation.

60 Sometimes, historians of mathematics consider anything standing for, say, a censo and not
identifiable as a letter abbreviation as a “mathematical symbol”, thereby blurring what is important
is symbolism. Let me be emphatic: If somebody uses for the censo but still intends it to be read
in normal language (just as Dardi’s ç meant to be read censo), then it is part of a syncopated text
and no more a mathematical symbol than “&” meant to be read “and”. For such non-letter and quasi-
letter abbreviations, no better word seems to be available than “glyph” – it is a logogram for a word,
or an ideogram for a concept.

∀ and ∃ are mathematical symbols, not because they are not proper letters but because of the
syntax within which they are used. And they remain symbols even though they abbreviate “[for]
All” and “[there] Exists”.
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Algebra in German land

Experimentation was soon left behind, however. In the Sesta parte del general trattato,
Tartaglia [1560: 1r ] repeats Pacioli’s names and numbering for the dignità (stopping
halfway, as the higher powers are unimportant, and leaving aside the root names); in the
unpaginated chapter 1 of his Practica arithmetice et mensurandi singularis, Cardano [1539]
does the same (using the same names again in the Ars magna). Only Bombelli [1572: 204]
would replace cosa by tanto and censo by potenza.

We may therefore shift attention to what happened when a number of Latin-trained
mathematicians from the German area discovered what to them, given their background,
was a new mathematical art, namely algebra.[61]

Eclectic beginnings

At first these pioneers grasped what they could find. Part of their inspiration came
from northern Italy, as reflected in the orthography of their technical loanwords: coß coming
from cossa, not cosa, and zensus reflecting zenso, not censo. But they also learned from
Florentine material (Regiomontanus certainly did), and even from the Latin translations
of al-Khwārizmı̄’s algebra; the latter, however, had little impact.

At first, the outcome was eclectic, the material at hand being disparate and those
engaged in the process not yet competent enough to straighten the discrepancies. Details
can be skipped, but see [Høyrup 2024: 381–395].

The first step toward some kind of streamlining can be found in the “Latin algebra”
contained in the manuscript Dresden, C 80 (fol. 350r–364v, ed. [Wappler 1887: 11–30]).
True, even this is an eclectic conglomerate, but the constituents overlap or supplement
rather than contradicting each other. We shall return to it and in the present connection
only observe that it uses abbreviations for the powers systematically. The names that can
be identified in one of the segments are

res – zensum – cubus – zensum zensorum

In 1486, Johannes Widmann proposed and held a series of lectures on algebra in
Leipzig – private but announced at the university [Gärtner 2000: 6, 34f ]. At the time,
Widmann was the owner of the Dresden manuscript, and since the announcement refers
to a set of 24 rules and the “Latin algebra” does contain such a set, we may assume that
his lectures drew on that conglomerate. In any case, there are no indications that Widmann’s
lectures – whether just repetitions of what was in the “Latin algebra” or further
development – had any influence.

61 We have some names: Regiomontanus, Friedrich Amann, and a Dominican friar known as Aquinas.
Others, anonyms, were involved in the adoption too; we cannot be sure that all of these had first
been trained in the Latin standard curriculum (Boethius, Euclid/Campanus, algorism, etc.), but it
remains a reasonable guess – there is no trace of algebra in writings left by ordinary Rechenmeister.
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Andreas Alexander

The real inception of the specific German algebraic tradition – the Coß – is due to
Andreas Alexander, one of the first specialized matematics lecturers in Leipzig (no
promotion but meaning that he might teach mathematics but would not be allowed to
proceed to other more lucrative fields – mathematicus non est collega, in a saying from
the later German Humanist tradition[62]) In his Mathemalogium [1504: C ii] he says that
√32 is surd “for reasons that are shown to you in the art of algebra”, and further (fol. Cvir) he
states that algebra descends partly from arithmetic, partly from geometry “as I have
explained to you in its text and commentary”; his unpublished algebra manuscript was
thus written no later than 1504. Irrationals are indeed dealt with extensively in the
manuscript, which also fits the other copious references to algebra in the Mathemalogium)

This algebra was never published but discovered by Menso Folkerts in the manuscript
Leipzig, Hs. 1696. A closely related German algebra Initium Algebrae, “Algebra’s
Introduction”, was published by Maximilian Curtze in [1902: 435–600].[63] It survives
in no less than four manuscript copies, and consists of relatively short Latin quotations
followed by long explanations in the vernacular. The order of the material is not the same
in the two treatises. Initium Algebrae further offers geometric demonstrations for the
algebraic cases which are not in the Latin manuscript.[64] However, the agreements are
sufficient to lead Hellmann (who is preparing an edition of Alexander’s algebra) to the
conclusion that they come from the same hand [Rüdiger, Gebhardt & Folkerts 2023: II,
34]. Since the Initium Algebrae has the shape of a commentary to a Latin treatise, we may
conclude with fair certainty that Alexander made several versions of his Latin algebra;
this helps to explain that his work, though existing in manuscript only (but thus
manuscripts, in the plural) could become as influential as we can see it to have been.[65]

62 See, for instance, [Lindemann 1904: 7]. It seems that Alexander experienced this disdain: according
to a letter from Melanchthon’s hand, he was so despised in the university that he left Leipzig and
made his living in Meisssen by writing song-books and selling ink (ed. Martin Hellmann in [Rüdiger,
Gebhardt & Folkerts 2023: II, 32].

63 Because of its opening words Initii Algebrae Arabis [...] prologus feliciter incipit, Curtze assumed
its fictitious author to be one “Initius Algebra”. As argued by Hellmann [2003: 88], the phrase should
be understood “Begins happily the prologue to the introduction of Algebra the Arab”.

64 They might be inspired by one of the translations of al-Khwārizmı̄, but then Alexander has
extrapolated, offering also a proof for the case census equals roots. Inspiration from al-Khwārizmı̄
is supported by the use of the term radix instead of res or coß.

65 Apart from possible influence on Heinrich Schreyber and certain inspiration of Rudolff, his Latin
treatise was also used by Adam Ries for the unfinished revision of his Coß [Rüdiger, Gebhardt &
Folkerts 2023: II, 37].
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In both (fol. 42r respectively [ed. Curtze 1902: 474]), the sequence of powers is listed
as

dragma – radix – zensus – cubus – zensus de zenso – sursolidum – zensi

cubus – bissursolidum – zensus zensui de zenso – cubus de cubo

Composition is made by embedding, as we see, with the consequence that new Latin names
for the fifth and seventh powered have been introduced. In Alexander’s Latin manuscript,
the corresponding powers of 2, 3 and 4 are listed, in Initium Algebrae only the powers
of 2. Both explain the nature of the sequence as a continued proportion, which allows them
to reduce the 24 equations to 8.

The sequence expands the one we find in the Latin Algebra of C 80, and also its
sequence of abbreviations.

Heinrich Schreyber

The first to bring German algebra into print was Schreyber, publishing under the
Latinized name Grammateus. His Ayn new kunstlich Buech, welches gar gewiß und behend

lernet nach der gemainen regel Detre, welschen Practic, regel falsi unn etlichen regeln

Cosse includes a chapter [Grammateus 1521: Gvir–Livv] with “regula falsi together with
several rules of coß”, speaking much more about the Coß than about the double false
position.

Schreyber knows the names “radix, census, cubus, census de cen. etc., but after
mentioning them in the beginning (fol. Fviiv) he goes on with discussion of continued
proportions (and with their geometric interpretation as far as it goes, which already
Alexander had given). This leads to his own naming and abbreviations (fol. Giiir ):

N – 1a: or pri: – 2a: or se: – 3a: or ter: – 4a: or quart: – 5a: or
quint: – 6a: or sex: – etc.

That is, the powers are named simply by the exponents, similarly to what Chuquet had
done, but so differently that inspiration can be excluded (even if we disregard the difficulty
that Chuquet’s idea was buried in a manuscript kept in far-away Lyon)

Christoph Rudolff and later coß

The book that came to define coß for the rest of the century and beyond was Rudolff’s
Behend unnd hübsch Rechnung durch die kunstreichen Regeln Algebra, so gemeincklich

die Coss genennt werden, published in [1525].[66] Rudolff has learned much from
Alexander – he operates with the same 8 cases (fol. 52r onward), and pokes fun at those
who insist on 24. He also uses Alexander’s names and abbreviations for the powers of
the unknown (fol. 24v). However, while Alexander offers no examples (except some

66 Unpaginated; I refer to the handwritten foliation in the specimen in Augsburg, Staats- und
Stadtbibliothek, Math. 740.
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historical anecdotes, for instance about a riddle given to Solomon, which he then asked
Algebras to solve), Rudolff has a huge number (many more than Schreyber). As regards
the names and understanding of the unknown and its powers there is nothing important
to observe (except Rudolff’s systematic use of a second unknown, to which we shall return
in Chapter V).

The same can be said about later important Latin works in the cossic tradition: Michael
Stifel’s Arithmetica integra from [1544], Johann Scheubel’s explanation of algebra in his
edition of Elements I–VI [1550] and Christopher Clavius’s Algebra from [1608], and also
about Valentin Mennher’s Arithmetique seconde printed in Antwerpen in [1556], in which
Rudolff’s Coss was transferred into French.

Jacques Peletier

Slightly more important is Jacques Peletier’s L’algèbre from [1554]. There was interest
in the topic in France – Scheubel’s introduction was published separately in Paris in [1551],
and apparently sold well, since it was reprinted the next year.

Peletier points to Stifel (p. 4) as a main inspiration, but he has apparently also read
Pacioli, Cardano and Scheubel; others he knows about without having seen their works –
Rudolff, Adam Ries (whose Coß was a manuscript, only to be published in 2023), Pedro
Nuñez (whose algebra was also a manuscript only in 1554, but to be published in 1567).

Peletier refers to the powers as nombres radicaux, which might point to Pacioli’s root
names. His names (p. 8) are inspired by those used by Stifel and in the cossic tradition:[67]

racine – çanse – cube – çansiçanse – sursolide

His glyphs are also those used by the Germans, the stylized z for zensus however replaced
by a stylized ç, and the term for the first power replaced by in agreement with racine.

On p. 8 he invents the term “exponent” (exposant) by pure accident. It happens in
a scheme that aligns the arithmetical progression 1 – 2 – 3 – 4 – ... with the abbreviations
for the powers (a third line in the scheme indicated the corresponding powers of 2). The
numbers in the arithmetical progression are said to exposer the nombres radicaux and their
glyphs, and afterwards spoken the of as “the exposing”, les exposants (meaning something
like “the identifiers”).

More interesting is what Peletier does with these exponents (p. 10). He points out
that the prime factorization of the exponent shows how the corresponding powers can be
understood as compositions by embedding – giving as examples 24 and 100. Thereby arises
the need for names and glyphs for prime powers, which are introduced on p. 11. The cossic
glyph for the sursolidum is ß, so for the 7th, 11th, 15th and 17th power Peletier uses bß,
cß, dß and eß. We may think of Pacioli’s secondo, terzo, quarto and quinto relato; maybe
Peletier did so too.

67 Peletier points out that “some” (probably Pacioli) speak of the fifth power as premier relat.
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Jean Borrel’s introduction to algebra [Buteo 1559: 117ff ] is elementary and
uninteresting in this respect (it stays at three powers). Guillaume Gosselin [1577], like
Borrel eager to root algebra in classical Antiquity (though otherwise inspired by Tartaglia –
in [1578] he translated the first two volumes of the General trattato), takes over many
of the names and abbreviations used by Wilhelm Xylander [1575] in his translation of
Diophantos (details below, p. 62).

With Viète (and then Descartes), the notion of the (or the primary) algebraic unknown
is left behind. The chapter therefore ends here.



Chapter III. Abbreviations, glyphs, symbols

and symbolic calculation

So, let us return in earnest to symbolism, and to those abbreviations and glyphs that
should not be conflated with symbolism. Yet this asks for another detour. Algebraic
symbolism had indeed been developed in al-Andalus or the Maghreb in the late 12th
century (there are reasons to ascribe it to Ibn al-Yāsamı̄n, †1204, who moved between
the two areas).

The Maghreb symbolism

Fibonacci knows about the fraction line and the notation for ascending continued
fractions,[68] also apparently created in the Maghreb or al-Andalus in the 12th century.
The symbolic notation, on the other hand, seems to have arrived too late.

This symbolism was “discovered” (in the same sense as Columbus discovered the
Americas) by Franz Woepcke in [1854] in al-Qalasādi’s Kašf from 1448 CE. In recent
decades is has been described in detail by Driss Lamrabet [1994] and by Mahdi
Abdeljaouad [2005; 2011; 2011]. Abdeljaouad [2005: 20, 24] has documented initial use
in the 12th century (whether already fully developed or not is unclear) and survival in
Ottoman mathematics at least until the late 18th century; Lamrabet [1994: 239] refers to
use in the Maghreb as late as 1894.

The symbolism makes use of stylized and transformed single-letter abbreviations (thus
half abbreviations, half glyphs) for powers of the unknown written over the coefficient
(corresponding to the thing, the census and the cube – higher powers being produced by
multiplication), and moreover for subtraction, division, equality, and square root. Where
it serves, the stylized letters can be prolonged, thereby serving as algebraic parentheses;
in that way, the glyph for division becomes similar to a fraction line.

This fraction line allows the writing of “formal fractions”, expressions which have
the shape of fractions but whose numerators and denominators are polynomials, and on
which operations are performed as if they were genuine fractions, irrespective of the syntax
of language proper. Thereby, the glyph becomes a genuine symbol and the notation a
symbolism in the sense explained on p. 3. The other glyphs, even when able to function
as algebraic parentheses, take as arguments only simple or composite numbers, not algebraic
expressions. They are therefore not full-blown functions.

68 For instance, “four seventh, and one half of a seventh”, written . Fibonacci uses the notation
1 4

2 7
in all surviving works and goes until ten levels.
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In some manuscripts, the whole symbolic calculation is written into the text or as
marginalia. Other manuscripts render fragments of fuller calculations that have been written
on a clay- or dustboard [Abdeljaouad 2005: 29].

We have no direct proof that this Maghreb notation was taken over in abbacus algebra,
but what turns up there is sometimes quite similar – sometimes not (in the latter cases
thus either independent or misunderstood).

The Italian beginnings

The first trace of symbolic thinking in abbacus algebra is mutilated. It is found in
Gherardi’s Libro di ragioni (above, p. 17), in the illustration to the case Gh6, the division
of 100 by some quantity and then by 5 more, the sum of the two divisions being given –
in our symbols

100÷q + 100÷(q+5) = 20 .

Without making it explicit, Gherardi solves the problem by means of formal fractions.
In the full form of the calculation (as found in later texts), the “quantity” is posited to
be a thing, and the quotients then written as fractions and “added as if they were fractions”

+ = = = 20 .
100

thing

100

thing plus 5

100(thing 5) plus 100 thing

thing(thing 5)

200 thing plus 5

censo 5thing

Without mentioning fractions, Gherardi goes through the appropriate operations; he also
refers to the scheme for cross-multiplication that produces the numerator (forgotten in the
copy but easily reconstructible):

The calculation is performed in detail in later abbacus books, which cannot have derived
it from Gherardi’s obscure rudiment; Gherardi must have borrowed it from earlier writers
who also inspired other abbacus authors.

We must conclude that formal operations were known in abbacus algebra already before
1327. There is no trace at the moment, however, of any use of abbreviations, which teaches
us an important lesson: Just as abbreviations or glyphs are not necessarily meant as

symbols and used in symbolic reasoning, symbolic reasoning can be performed with full

words representing the entities involved – but then they are used not within the syntax

of normal language but within the proper syntax of symbolic calculation. When matters
get complicated, symbolic reasoning evidently becomes prohibitively cumbersome if not
supported by simple symbols. In other words, the link between symbolic syntax and
symbolic lexicon is first of all a practical matter, no transcendental necessity.

Biagio “il vecchio”

The link, however, was not far away in time. Among other extracts from eminent
predecessors, Benedetto da Firenze includes in his Praticha (above, p. 21) a large problem
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collection taken from an earlier praticha, this one written by Biagio “il vecchio” [ed.
Pieracchini 1983] (above, p. 22). According to Benedetto, Biagio died around 1340,
meaning that he may have been Gherardi’s contemporary. Benedetto is philologically
conscious and conscientious, and we may therefore feel confident that when he renders
Biagio’s symbolism in a way that differs from his own he follows, if not necessarily
Biagio’s original then at least the manuscript in his possession (at one point he actually
doubts the fidelity of his manuscript[69]).

Biagio uses formal fractions repeatedly, also for more complicated purposes than
Gherardi and most other abbacus algebras. We may look at one example (fol. 403r–v; [ed.
Pieraccini 1983: 110f ]):

Somebody makes two travels. In the first travel he earns 8, in the second he loses at the
same rate as he has earned in the first. And then he finds to have 12 fiorini. It is asked
with how much he set out. Posit that he set out with one thing, at the first travel, and he
earned 8, he will thus have a thing and 8. And with this he left the first travel and goes
to the second, at which it is said that he loses at the same rate as he has earned. You will
say thus: at the first travel he made from one thing a thing and 8. And if at the second
travel he loses at the same rate, he must do the opposite, that is that you will say, if from
one thing he earned 8, he earned of a thing, that is, of his capital, where you will8

1ρ

8

1ρ
take of a thing and 8, which are 8 things and 84 divided in a thing, that is, this8

1ρ
fraction .[70] And this is that which he find to have done in the second travel, and8ρ 64

1ρ
we said that he finds 12. are thus equal to 12. And in order not to have fractions,8ρ 64

1ρ
multiply both sides [parte] by 1 thing, you will have 12 things to be equal to 8 things and
64, where you shall confront [raguaglierai[71]] the sides, removing from both sides 8
things, and we shall have that 4 things are equal to 6, where the thing is worth 16. And
we made the position that he set out with a thing, he thus set out with 16.

The glyph ρ for the thing (obviously not the Greek letter, but fairly similar, sometimes
tending toward φ) was to become quite common in the Florentine tradition and beyond,
though not without competition – “as many heads, so many opinions”, in Pacioli’s words.
As we see, Biagio only makes use of this notation in the formal fractions, not in the running
text. It already serves symbolic transformations, however – we may compare Biagio’s

69 Apparently without reason [Høyrup 2024: 225], which should enhance our confidence that what
Benedetto reports really goes back to Biagio.

70 Addition is indicated by juxtaposition, in agreement with the understanding of addition as
aggregation of the constituents. The idea of arithmetical operations as mappings from Q×Q to Q
is evidently out of place when we discuss pre-19th century mathematics.

71 We observe the use of the equivalent of muqābalah for the production of the reduced equation –
cf. above, p. 8. That subtraction on both sides is not meant is clear on fol. 303v [ed. Pieraccini 1983:
112f ], where we find “you shall confront the sides, giving to both sides 2160 and removing from
both sides 234 things.
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“in order not to have fractions, multiply both sides by 1 thing” with al-Khwārizmı̄’s
acrobatics (above, p. 1) – indispensable within his purely rhetorical exposition:

Then divide ten less a thing by a thing so that four result. However, now you have known
that when you multiply what comes out of a division by the same by which you divided,
it will give back your amount which you divided. But what results from the division in
this question was four, and that by which was divided was the thing.

At times censo appears in the formal fractions in full writing – thus fol. 303v [ed.
Pieraccini 1983: 112], (mê stands for meno, “less”); at times it is abbreviated1080ρ mê 2160

2 censi mê 6ρ
co – thus fol. 405r [ed. Pieraccini 1983: 125], . In both cases, the equation in which360

1c° 3ρ
they occur are reduced through multiplication by the denominator without further ado
(symbolic syntax can still function without a full symbolic lexicon.

The former fraction results from the addition of and . The text refers360

1ρ

360

2ρ mê 6
to a marginal diagram as explanation of how to do it. That diagram (badly rendered by
Pieraccini) shows the cross-multiplication similar to what has been lost in the surviving
copy of Gherardi’s Libro di ragioni (above, p. 45). Though probably widening their use,
Biagio did not invent the symbolic calculations.

A modest beginning – yet still a beginning – though obviously not going beyond what
was apparently already traditional in the Maghreb at the time. So far the question of
influence or borrowing is undecidable (but we shall encounter supplementary evidence).

Dardi and Alcibra amuchabile

Dardi’s Aliabraa argibra from 1344 (above, p. 19) offers a contrast. Dardi also makes
use of abbreviations for thing and censo, but they remain abbreviations; in Nesselmann’s
terminology (above, note 5), Dardi’s text is syncopated. Censo, in agreement with his
Venetian spelling çenso, is abbreviated ç (for ease of distinction I shall use Ç), while the
thing (cosa) is c.

Dardi’s use of the fraction notation illustrates the difference. Before discussing that,
however, we should take note of a particular use of ordinary fractions that is found in
many abbacus treatises. Speaking (for example) of three men having money, they may
write “the ” when intending “the third [man]”. That is, the denominator of the fraction1

3
is understood as a denomination. In the “Columbia algorism” (plausibly the very earliest
surviving abbacus text albeit conserved in a 14th-century copy only, see [Høyrup 2024:
182f ]) this principle is used also [ed. Vogel 1977: 65] in such notations as standing

1

grana

1

2

for “1 grana and 1/2 [of a grana ]” – that is, in an emulation of an ascending continued
fraction where the first “denominator” is a metrological denomination.

This habit explains Dardi’s notation for algebraic monomials. On fols. 15r, 22r, 46v

of the Vatican manuscript we find standing for “1 censo”, for “30 things”, for “21
1

Ç

30

c

21

n

(in) numbers”, and for 36 cubes; further, (an emulation of an ascending continued
36

cu

5

c

1

3
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fraction) for “5 things and 1/3 [of a thing]”.[72] Nothing but a compressed linguistic
expression and no operatory symbolism however rudimentary is intended. That can be
seen from the way “1 censo of censo” is expressed (fol. 47r ) – namely as de Ç. In

1

Ç

any case, no symbolic operations are possible on these pseudo-fractions “as if they were
fractions”.

That is not to say that Dardi does not know symbolic operations. He does, but they
are of a different kind, based on graphic schemes and serving in the multiplication of
binomials. For instance (fol. 6r ), for (3–√5) (3–√5)

( abbreviates radice, “root”). It must be observed, however, that these schemes are used
for operations with arithmetical binomials only (including square roots of numbers or of
other arithmetical binomials), not for algebraic binomials.

Alcibra amuchabile[73] is a composite treatise dedicated to algebra alone from ca

1365. In a first part, where the arithmetic of roots and binomials is taught, schemes similar
to those of Dardi are made use of. Since they are not quite as developed, Dardi is hardly
the source – which on the other hand means that even here Dardi took over and unfolded
a pre-existing technique. A second part lists 24 algebraic cases with examples. As much
as possible is taken over verbatim from Jacopo’s algebra.[74] Other problems, with false
solutions, are shared with Gherardi, but not verbatim. A writer who copies one source
faithfully would hardly treat another source differently without reason, which means that
Gherardi was not the immediate source – with the further implication that Gherardi was
not the inventor of the false solutions, just as he was not the inventor of the rudimentary
handling of formal fractions (above, p. 45).

The third part consists of 41 solved problems. Interesting here for our present purpose
is a full explanation of the use of formal fractions. The context, once again, is this question:

Somebody divides 100 in a quantity, and then he divides 100 in 5 more than at first, and
these two results joined together made 20. I want to know in what 100 was divided at first
and in what it was divided afterwards.

72 The notation is not Dardi’s own invention. There is a single unexplained on fol. 159r of the10

cose
draft version of the Trattato di tutta l’arte dell’abacho (above, p. 18).

73 Florence, Biblioteca Riccardiana ms. 2263, fols 24r–50v [ed. Simi 1994].

74 In one place, Jacopo gives up the transformation of 4 √54 into √864 and leaves spaces in the
text, demonstrating thus that he calculates on his own (unless he copied uncritically from a source
with this character). The Alcibra amuchabile performs the calculation, leaving no doubt that Jacopo’s
text (or, unlikely, this hypothetical very close precursor) is its source. The algebra in the Vatican
manuscript of Jacopo’s Tractatus cannot descend from the Alcibra amuchabile.
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Then comes the explanation:

Posit that you divided 10 in a thing, 100 divided in a thing results. And then say that you
divide 100 in 5 more than at first, you shall thus divide 100 in a thing and 5, 100 divided
in a thing and 5 results. Now you have to join 100 divided in a thing with 100 divided
in a thing and 5. Now I will show you something similar so that you may be well advised
about this joining and I will say thus: I will join 24 divided by 4 with 24 divided by 6,
which you see should make 10. Thus posit 24 divided by 4 in the way of a fraction, from
which results 24/4 . Also similarly posit 24 divided by 6 in the way of a fraction. Now
multiply in cross, that is 6 times 24, they make 144, and now multiply 4 times 24 which
is above 6, they make 96, join with 144, they make 244. Now multiply that which is below
the strokes, that is 4 times 6, they make 24. Now you should divide 240 by 24, from which
10 should result. I say that if I multiply 10 which should result from it against the divisor
24, it will make the multiplied, that is, 240,[75] and so it does precisely. Let us therefore
return to our problem. Let us take 10 divided by a thing and therefore posit these two
divisions as if it were a fraction, as you see it drawn hereby. And now multiply in cross,
as you did before, that is, 100 times a thing, which makes 100 things. And now multiply
the other way, that is, 100 times a thing and 5, they make 100 things and 500 numbers;
join to 100 things, you have 200 things and 500 numbers more. Now multiply what you
have below the strokes, one against the other, that is, a thing times a thing and 5 more,
they make a censo and 5 things more. Now multiply the results, that is, 20 against a censo

and 5 things more, they make 20 censi and 100 things more,
100 100

per una cosa per una cosa e piu 5

which quantity is equal to 200 things and to 500 numbers. Now take from each side 100
things, you will have that 20 censi are equal to 200 things and to 500 numbers. Bring to
one censo, that is, that you divide each thing by the censi, you will have that one censo

is equal to 5 things and to 25 numbers. [...].

We still see an echo of al-Khwārizmı̄’s explanation from p. 1 in the statement that “if
I multiply 10 which should result from it, against the divisor 24, it will make the multiplied,
that is, 240”. However, with the explanation that is given, this reference to (what we might
see as) the definition of division becomes superfluous. As always in the extension of
mathematical domains, the default assumption is that the familiar rules still hold; if they
do not (as in the case of quaternions), serious and difficult work has to be done.

As we remember (above, p. 47), Biagio had felt no need to explain his ways to deal
with formal fractions. History is not linear – and even less the “history” we construct from
accidentally surviving sources.

75 Thus, correctly, the manuscript. Simi writes 24, apparently taking the small final zero for a spot
of ink.
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The Liber restauracionis

The Latin Liber restauracionis (thus called by Marc Moyon, who in [2019a] made
a critical edition of the three manuscripts known so far[76]) does not really belong within
the abbacus tradition, nor is it however wholly foreign to it – border regions are often
porous. Beyond these, a vernacular translation was made around 1400.[77]

The Vatican manuscript was published by Boncompagni in [1851]. Trusting its
misleading incipit, he identified it with Gerard’s translation. As this was proved by Axel
Anton Björnbo [1905: 239–241] to be wrong, it seemed a natural assumption to ascribe
it to Guglielmo de Lunis,[78] who is stated in a few late-15th- and early-16th-century
sources to have translated al-Khwārizmı̄’s algebra “into our language”[79] – cf. above,
p. 22. This language could be Latin as well as an Italian vernacular. This identification
was proposed by Moritz Steinscheider in [1904: I, 80], and by many others after him.
Unfortunately, the ascription is impossible, an instance of fitting square pegs into round
holes (or misuse of Occam’s razor as an arrogant claim that we already know everything
worth knowing – I leave to the reader to decide which is to be preferred). All references
to Guglielmo’s text[80] contain a long list of equivalences of Arabic and Italian terms
(cf. above, note 30), and there is no trace of that in the Liber restauracionis. Beyond that,
the part of the Guglielmo version we know from the Palatino Praticha has nothing to do
with the Liber restauracionis. The latter remains anonymous.

The Liber restauracionis is no translation of al-Khwārizmı̄’s text, not even a free
translation. As discussed by Moyon [2019a: 8] it is either a redaction composed directly
in Latin or a Latin translation of a redaction composed in Arabic during the late 12th or
the 13th century; in either case, the author will have worked in al-Andalus or elsewhere
in the Iberian Peninsula.

76 Vatican, Vat. lat. 4606, fols 72r–77r – mid- to later 14th century; Oxford, Bodleian, Lyell 52, fols
42r–49v – probably early 14th century; Florence, BNC, Conv. Soppr. 414, fols 60va–63vb – maybe
1304.

77 Vatican, Urb. lat. 291, fols 34r–42r, cf. [Van Egmond 1980: 215f ]. Apparently based on the Latin
Vatican manuscript.

78 Probably identical with the Guglielmo de Luna who was connected to the Studio of Naples and/or
to the courts of Frederick II and his son Manfred; and who translated Ibn Rušd and other
philosophical writings into Latin. See [Delle Donne 2007]. Cf. above, pp. 3 and 22.

79 All familiar from the preceding pages: Benedetto da Firenze, Praticha, fol. 368r [ed. Salomone
1982: 1]; Canacci, Ragionamenti d’algebra [ed. Procissi 1954: 302]; Francesco Ghaligai [1521:
71v]. Originally, only Ghaligai’s text was known.

80 Disregarding a wrong ascription to him of a manuscript of Gerard’s translation – see [Hughes
1986: 223].
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The reason to take up this treatise is a section [ed. Moyon 2019a: 17–20] Qualiter

figurentur census, radices et dragme, “How census, roots and dragmas are rendered”,
apparently inspired by certain features of the Maghreb notation. Census, root and dragma

are represented by c, r and d, respectively (dragma, being just the unit of pure number,
is not always written, or alternatively appears as a mere ); coefficients are written above,
not below as in the Maghreb notation. The operator for subtractivity is a dot below the
abbreviation. In the vernacular translation, as in abbacus algebra, the root has been replaced
by cosa, abbreviated c, while conveniently census has become sensus, which can be
abbreviated s.

Neither the Latin nor the vernacular version use the notation outside this short
presentation; it seems to be something included for the sake of completeness but not part
of the algebraic working of the author (if he has any). It thus represents no symbolism,
not even a rudimentary first step. The existence of four surviving manuscripts is evidence
of some interest, but mainly in an environment oriented toward Latin mathematical learning.
After ca 1400 this interest waned; the notation seems to have been adopted by nobody
else (which would indeed have been rather amazing, given that it is not shown in practical
use).

Late 14th- and 15th-century algebra

After a small century, one might perhaps expect abbacus algebra to have reached some
sort of homogeneous maturity in the late 14th century. This can indeed be claimed
concerning the basic, school-bound level of abbacus mathematics. Abbacus algebra,
however, was cultivated actively by relatively few teachers and therefore was not pushed
toward homogenization. Theirs was a manuscript culture with little systematic exchange
of new insights – competition, mostly concerned with the ability to solve intriguing
problems, would rather make innovators keep for themselves their good ideas for solving
these problems. Many sources (most, certainly) have been lost, so there may have been
more of a continuum than we can see from what has accidentally survived – but what
little has survived demonstrates beyond doubt that there was no unity and limited continuity.

Late-14th-century Florence

Florence was a large city – the fifth-largest of 14th-century Europe [Brucker 1969:
51]. It was an industrial, trading and banking city. No wonder that it was home to a number
of abbacus schools and abbacus masters.[81] Some of them (Biagio “il vecchio”, Paolo
dell’Abbacho and Antonio de’ Mazzinghi, cf. above, p. 22) seem to constitute a “tradition”.
Those who were active at the same time will evidently have known about each other as
colleagues and/or competitors. To which extent they will have known about the mathematics

81 See [Ulivi 2004] and [Ulivi 2002: 195–209].
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of these colleagues in as far as it went beyond the common stock is more of a question.
Two Florentine writers from the late 14th century will illustrate this.

One was Antonio de’ Mazzinghi – author of the Fioretti that were spoken of above
(p. 27). In the present context we may observe that he uses more or less the same symbols
as Biagio though with extensions of the system – for instance[82]

meaning or .r.1805.c.e.p 19ρ

r.20.c

radice 1805 censi e più 19ρ

radice 20 censi

√(1805 censi) 19ρ

√20 censi

Occasionally, like Biagio, Antonio still writes censo in full within the formal fractions;
outside the formal fractions, radice is often abbreviated . New is or an encircled fully
written radice indicating that a root is to be taken of a binomial.[83] Dardi, instead, had
used a verbal expression, de zonto, “root of, joined ...”. Others, also after Antonio, would
speak of a radice generale, radice universale or radice legata (“general”, “universal” or
“bound root”). Antonio combines the two, and uses writes for instance “general root of
one thing plus root of 350 less one censo” (underlining represents encircling) where we
would write

thing 350 1 censo

(more on this in the next chapter). Whereas the encircled radice is a notational but no
conceptual innovation, the combination in nesting certainly was (and to my knowledge
not emulated by others at the time).

The margin is sometimes used for summaries of what has been calculated in the text.
It also serves, as we know it from Biagio and with traces in Gherardi, for addition of formal
fractions with indication of the cross-multiplication – now, however, for instance on fol.
464r ) with an extension. The text asks for the addition of and («–» here80 16ρ

5 1ρ

80 16ρ

5 1ρ
replaces Antonio’s mê, «+» his p). In the margin we find

×
80 16ρ

5 1ρ

80 16ρ

5 1ρ

and below this the determination of the resulting sum

400 80ρ
80ρ 16c

400 +160ρ + 16c

400 –160ρ + 16c

800 + 32c

25–c

The first three lines calculate (5+1ρ) (80+16ρ) in a scheme borrowed from the
multiplication a scacchiera (“on chessboard” – very close to our present algorithm) of

82 This is precisely where Benedetto declares his intention to speak like Antonio (above, p. 27) after
having pointed out that one might as well say 9[0]1/2 +√18 1/20 . There is thus no doubt that Benedetto
follows Antonio precisely. We also observe that the notation used here is not precisely what we
encountered in the borrowings from Biagio, confirming the intended fidelity.

83 This encircling is left out in Arrighi’s edition, it has to be found in the manuscript.
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multi-digit numbers. The fourth line states the result of (5–1ρ) (80–16ρ) without
calculation, and the fifth the sum of the two products, that is, the numerator of the sum;
the sixth, finally, contains its denominator (under a stroke that now serves as fraction line).

Nothing similar to this second part of the marginal calculation is found in the Alcibra

amuchabile, in spite of its detailed explanation of the summation of the two formal fractions
(nor in Benedetto’s transcription of Biagio’s problems, in spite of the three marginal
indications of cross multiplications). We may therefore assume that the use of the a

scacchiera scheme was a fresh development when Antonio wrote – perhaps but not
necessarily due to Antonio himself.

The slightly later Florentine Tratato sopra l’arte della arismetricha (above, p. 28)
is mainly of interest for the present chapter because of its use of schemes for polynomial
arithmetic. These are written within indented frames, which however at times take up the
whole column breadth.

Those which are simple enough (multiplications of two binomials) make use of the
scheme which we encountered in Alcibra amuchabile and in more elaborate form in Dardi;
here they are even less developed, the lines being omitted. Those that are more intricate
are made a scacchiera, as we just encountered it in Antonio.

As current at the time, is used for radice in the running text as well as in the
schemes. No other abbreviations are used in the running test, but within the schemes, the
cosa may be either chosa or ρ, while the censo may be written in full or abbreviated c.
Once more we see that rudimentary symbolic syntax does not require a symbolic lexicon.

A collective work from 1429

The di-Davizzo fragment (above, p. 13) contains no algebraic symbolism and no
algebraic abbreviations beyond the use of for radice. The rest of the algebra within which
it is contained (Alchune ragione) can be taken as a witness, if not of what was commonly
done in the Florentine environment in 1424, at least of what was done by a group of writers
probably connected to a single school or master.

is used regularly. There are no formal fractions anywhere. Abbreviations for
censo/zenso (cen, ) and chosa /cosa (co; ρ is absent) are used but not systematically.
Often they appear above the coefficient, as for instance , and ; a number maycen

1
co

120 8
(occasionally but rarely) be written or . When abbreviated, meno (“less”) is mostlyn o

100
n

100
mê but occasionally m̂. On fol. 38r we thus find

10 mê 1 cosa via 10 mê fa 100 e 1 censo mê 20 chose
co
1

10 less 1 thing times 10 less makes 100 and 1 censo less 20 things
thing

1

Occasionally, the margin contains summaries that are more consistent, but never formal
calculations – for instance this equation written without equation sign (fol. 39v):
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10

co
1

co
5

e 1più

1

All in all, this compilation presents us with unsystematic use of a symbolic lexicon but
no symbolic syntax.

The notation differs from what we have seen so far, but the principle to write the
symbol above the coefficient reminds of the Maghreb notation. Given the absence of formal
fractions or any other kind of symbolic calculation, however, a not unlikely inspiration
must have been rather ineffectual.

The Florentine encyclopedias

As we have seen, the three Florentine encyclopedias (above, p. 21), though borrowing
al-Khwārizmı̄’s introductory algebra (in Guglielmo de Lunis’s translation),[84] remain
within their own branch of the abbacus tradition (the tradition encompassing Biagio and
Antonio – above, p. 22) when it comes to algebraic notation, albeit with a minor change
and a major expansion.

The minor change is the transformation of the c abbreviating cosa into a conventional
glyph which we may render σ.[85]

The expansion is the introduction of a long stroke functioning as an equation sign.
This long stroke is used for example in the Ottoboniano Praticha (fol. 331v) in a problem
which in hybrid symbols may be rendered

+ = 40 .
100

1ρ

100

1ρ 7

In the margin, we first find the two formal fractions and , and then this scheme100

1ρ

100

1ρ 7

100ρ
100ρ 700

200ρ 700

1σ 7ρ
40

200ρ 700 ——— 40σ 〈280ρ 〉

corresponding to the calculation

+ = = = 40 .
100

1ρ

100

1ρ 7

100ρ 100 (ρ 7)

(1ρ) (1ρ 7)

100ρ (100ρ 700)

1 censo 7ρ

The long stroke appears to be a recent invention. In a problem borrowed from Antonio’s
Fioretti, Benedetto’s margin (fol. 456r ) indeed gives . Borrowing the same problem

1

1ρ

1

1ρ 1

84 Namely, as an expression of Humanist piety – because it is older than what else is found, as
expressed in Benedetto’s Praticha (fol. 371v).

85 Benedetto, when introducing the abbreviations systematically (fol. 374r ) still uses c (elsewhere
also sometimes c°, with no system), and adds something looking like for cubo and r for cubo

relato, a term for the fifth power perhaps introduced by Antonio (see above, p. 27).
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but having no intention to “speak like Antonio”, the Ottoboniano writer uses what may
be assumed to be his own ways, and writes —— . That example, by the way,

1

1ρ

1

1ρ 1

illustrates the wider function of the long stroke as a “confrontation sign” – the two fractions
express the gain respectively loss of two trading partners.[86]

Within this particular tradition, as we see, there is some development of notations
from Biagio until the encyclopedias. It is quite modest, however, and very slow – and
nobody within this tradition nor in those to which Tratato sopra l’arte dell arismeticha

and Alchune ragione belong, attempts to innovate systematically.[87]

The Modena manuscript

As in its explicit presentation of gradi, the Modena manuscript differs from what else
we have seen by its abbreviations. .R. is sometimes used for radice, and for the powers
the manuscript uses powers capital letters, surrounded by points and conspicuously larger
than and distinct from the letters used in the text:[88]

.N. – .C. – .Z. alternating with . . – .Q. – .Z . – ...

continued in agreement with the naming (above, p. 34). There are no symbolic calculations.
It is possible that Peletier’s use of a stylized ç for the second power is a borrowing (the
shapes are very similar, with a greatly exaggerated cedilla), but it could also be a parallel
invention coming from his term çanse. Apart from that, I have seen no later traces of the
system used here.

Though systematically used and being different from mere letters, these glyphs remain
abbreviations. The running text where they appear is easily expanded into a classical
rhetorical algebra, similar to that of al-Khwārizmı̄. There are no operations directly at the
level of symbols. In Nesselmann’s terminology, the text is syncopated.

The shift from .Z. (which corresponds to the normal late 15th-century spelling) in

the initial tables to . . meant as .Ç. (which, we remember, corresponds to the northern
spelling in Dardi’s 14th century) in the running text might suggest that the original from
which this algebra is copied had used Ç, and that the copyist, at first intending to modernize
in agreement with his own orthography, soon gave up this idea and followed his

86 As we remember, the formation of a simplified equation was seen as a “confrontation”; for 15th-
century writers, the two functions were hardly different,

87 A marginal note on fol. 309r of the Ottoboniano Praticha uses a triangle for the cube and a double
square for the censo di censo, and furthermore a double stroke as equation sign. It is in a different
hand, however, and probably from the sixteenth century, and therefore does not change this
conclusion.

88 This distinction holds in the beginning, when the names and abbreviations are introduced. It tends
to be forgotten afterwards – with one partial exception: . ., rarely used in the introduction, becomes
preponderant in the main text, not an ordinary ç.
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model.[89] If so, this would mean that the system we see here was in fact developed at
a time where the normal spelling was çenso. If!

Chuquet

Chuquet’s notation for the powers is inseparable from his names, and were therefore

Figure 5. From [Ghaligai

1521: 1v]. Redrawn.

delSodo

already spoken above (p. 35). It looks modern but had no influence, and did not serve
in symbolic calculation. There is no reason to speak more about it.

Giovanni del Sodo

Giovanni del Sodo’s idiosyncratic naming of the
powers was described above (p. 38). The glyphs he
uses for them are certainly no less his own [Ghaligai
1521: 71r ] – see Figure 5. The best we can say about
this system is probably that it provides further
evidence for experimentation with systematic
abbreviation.

We may presume that del Sodo used these glyphs
also in his work with algebraic problems – so does in
any case Ghaligai, also in occasional symbolic
calculations.

Algebra in Italian print

We know del Sodo’s algebra from a printed book and not from his own writings. In
other respects there is much more to say about Ghaligai’s printed book, but not as regards
his account of his master’s algebraic notations.

Pacioli

Three of Pacioli’s works seem to be relevant for the topic of the present chapter –
one, however, only marginally.

As already said on p. 36, the chapter is lost from the manuscript Suis carissimis

disciplis in which a systematic presentation of his notation could be expected. Instead,
this notation has to read from the problems where he uses it, which at the same time shows
us how he uses if.

89 Van Egmond [1986] proposes the inverse process. My general experience with copyists (or modern
copy editors) who try to change a text is that they set out being more or less systematic and then
give up. Moreover, part of Van Egmond’s argument builds on a supposed coincidence of the writings
of “3” and “z”. He evidently had no magnifying glass at his disposal when working on the
manuscript. See the depiction in [Høyrup 2010:40] – scalable microfilms or scans are sometimes
better tools than the eyes applied to the original.
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The cosa is indicated by a superscript co, while the censo is a superscript and the
cubo a superscript ∆ – all written after the coefficient; higher powers are sparsely used,
but scattered problems and explanations show that censo di censi is abbreviated , while
censo di cubi becomes ∆; neither primo relato nor secondo relato are abbreviated. The
notation is used in simple marginal calculations (fols 117v and 118v, etc.); fol. 250r, a simple
symbolic equation (written with the long stroke as equation sign) goes through stepwise
transformation in the margin; on fol. 251v simple formal fractions are used within the
running text. Mostly, however, the exposition is syncopated.

There can be no doubts that this notation descends from the one we know from the
Alchune ragione (above, p. 53)

The Summa was printed with extremely small distance between the lines. It would
have been next to impossible to use superscript glyphs or abbreviations, which is probably
the reason that Pacioli now changes his notation, as indicated on p. 37, making use of
abbreviations and not of non-letter glyphs. The typesetting also does not allow for the
writing of formal fractions within the text column. They might still have been placed in
the ample margin, but the margin is only used for diagrams (and only in the geometric
part). Equation manipulations could also have been shown in the margin, but they are not.

Pacioli knew about formal fractions as well as symbolic equations and their
transformation – Suis carissimis leaves no doubt about that. He evidently did not find these
techniques so important that he would ask the printer to show them in his magnus opus.

A third way to denote algebraic powers is chosen by Pacioli in his translation of Piero
della Francesca’s Libellus de quinque corporibus regularibus, printed as part III of Divina

proportione in [1509] by the same printer as the Summa. A comparison with Piero’s own
manuscript version (Vatican, Urb. lat. 632) demonstrates that Pacioli really makes a
deliberate choice. Piero, writing in Latin, speaks of the first power as res, and overscores
the coefficient. “9 things” thus appears on fol. 4v as “9̄ res” (but res may be left out). His
second power is census, represented by a square written over the coefficient[90] – close
to what Pacioli had done in Suis carissimis.

In the corresponding passage (fol. Iv, and elsewhere), Pacioli uses written on the

same line and after the coefficient for the cosa and for the censo. These glyphs are not
used in symbolic calculations; Pacioli’s preference for the use of mere abbreviations is
revealed on fol. 3v of part I of the treatise, where he explains that various professions,
among whom le mathematici per algebra, use specific caratheri e abreviature “in order
to avoid prolixity in writing and also of reading”.[91]

90 In his algebra compilation (BNC, Conventi Soppressi A.VI.2606) Piero does as much (with cosa

instead of res) – e.g., fol. 46v; even less systematically, however.

91 A table in the manuscript (Milan, Biblioteca Ambrosiana, Ms. 170 Sup., written in 1498) specifies.
It lists abbreviations and glyphs for radice, più, meno, quadrato (cosa and censo are absent), together
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Three 16th-century Italian writers

Tartaglia [1560: 1r ] repeats not only Pacioli’s names and numbering for the dignità

(above, p. 39) but also his abbreviations. He uses them, however, in symbolic calculations
when dealing with the arithmetic of binomials, and also in formal fractions; but he does
not go beyond what was already done in Florence in the early 15th century.

Cardano is less systematic in the Practica arithmetice et mensurandi singularis from
[1539], but from time to time he uses the same abbreviations as Pacioli (even co for the
first power, although his full Latin term is res). He also uses the abbreviations in occasional
symbolic calculations. The Ars magna from [1545] is similar. Cardano was a great
algebraist not because of his notation and occasional symbolic calculations but in spite

of what he did on this account.

Bombelli’s notation for the powers is more innovative than his names. Along with
his list of names [Bombelli 1572: 204] he shows the abbreviation he is going to use, namely

the exponent written above an arc – the 10th power, for instance, being .
This allows him to formulate rules for multiplication and division of powers. When

negative powers result, as in the division of 20 by 41, Bombelli proposes “20 esimo di

41”, corresponding to “20 -th of 41” (just as ungrammatical in Italian as in English), but
alternatively by means of a formal fraction.

Bombelli’s system is similar to that of Chuquet, but with the difference that Chuquet
used the exponent also for roots. Bombelli, instead, uses letter abbreviations (p. 6):

R.q. (radice quadrata) – R.c. (radice cubica) – RR.q – R.p.r – ...

Bombelli’s notation had some influence; Simon Stevin [1585a: 26] knew him as “a great
arithmetician of our time”, and apparently borrowed his notation, although replacing the
arc by a full circle around the exponent. In De thiende [1585b] he used the same encircled
numbers to indicate places in decimal fractions; a borrowing in one or the other direction
is certain. The change to Bombelli’s notation may have been made because the printer
(Christofle Plantin in both cases) already had the encircled numbers at hand.

But even that influence resulted just as much a dead end as Chuquet’s forgotten
manuscript. The ink in Stevin’s Arithmétique was hardly dry when Viète undertook to
give algebra a new shape which would soon make Stevin’s approach irrelevant.

German notations

The transfer of algebra from manuscript to print thus did not bring any fundamental
change to the use of symbolism in Italy, in neither quality nor density of use. To the
contrary, the transfer to German lands soon did.

(inter alia) with abbreviations for linea, geometria and arithmetica) – see [Maia Bertato 2008: 13].
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The German and Latin algebras of Dresden, C 80

No immediately, however. During the initial eclectic phase, the use of notations was
equally eclectic.

We may leave aside the notations used by Regiomontanus in his private notes and
manuscripts. They are all but uniform (see, for example, [Høyrup 2019a: 338]), and reflect
the variety of sources he was using.

More interesting are the “German” and the “Latin algebra” contained in the manuscript
Dresden, C 80 (above, p. 39). An edition of the former was made by Kurt Vogel in [1981].
As pointed out by Vogel (p. 11), the number “unit” is indicated in six different ways, one
of which is an abbreviation and two are non-letter glyphs. The first power can also be
written in six different ways, two of which can be regarded as abbreviations while one
is a non-letter glyph. Even the second to fourth powers are represented in several though
fewer ways. Some of these names are root names, others not. At times, the pseudo-fraction
notation we know from Dardi (above, p. 47) is used (occasionally inverting the roles of
“denominator” and “numerator”); but in the very end a formal fraction appears (no Italian
source I know of had ever mixed these two). Apart from this single formal fraction, no
symbolic calculations are made.

The Latin algebra which is contained in the same manuscript may have served
Widmann for his algebra lectures (above, p. 39). As said, the treatise is a conglomerate,
but its constituents overlap and supplement each other. As also said, it uses a set of non-
letter glyphs (mostly more or less standardized stylizations of letter abbreviations) so
consistently that it is difficult to find out what the intended full verbal names are:

φ numerus

res

zensum

cubus

zensum zensorum

Less systematic is the use of a point « » for radix, “root”, and « » for “root of root”.
Cube root, instead, when not written in full, is “ cubica”; the square root also occasionally
appears as .

For those who are interested in the etymology of mathematical symbols it is worth
noticing that a mere point when written on uneven paper with a pen may be difficult to
distinguish (and to make). It was soon written with a down- and an upstroke, as , which
gave rise to the modern root sign √.

While the Italians, when abbreviating più (“more”, whence “plus”) and meno (“less”,
whence “minus”), had used letter abbreviations, the present manuscript uses + and –. Like
the transformed dot, even these glyphs, mostly serving as symbols, were also taken over
by others and ultimately by modern mathematics.
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Formal fractions are regularly used where they can serve. Beyond that, there are neither
occasions for nor use of symbolic calculations; on the whole the presentation is syncopated.

Alexander

Alexander, as we have seen (above, p. 41) has names for powers until the ninth with
corresponding glyphs, and he uses the latter systematically. He conserves what is found
in the Latin algebra just discussed, and expands it into what was to become the canonical
sequence of the coß:[92]

φ 1. dragma or numerus

2. res

3. zensus

4. cubus

5. census de censo

ß 6. sursolidum

7. censicubus

bß 8. bissursolidum

9. census censu de censu

10. cubus de cubo

As we see, Alexander falls into the same trap as Pacioli, numbering the powers in a way
that does not coincide with our exponents, encumbering the reduction of equations involving
higher powers (which does not prevent him from performing these reductions
correctly[93]).

The arithmetic of binomials (addition, subtraction, multiplication) is shown in schemes
emulating those for operations in Hindu-Arabic arithmetic. The operations on formal
fractions are also explained.

The Initium algebrae discards the inadequate numbering of the powers.[94] As regards
its use of schemes and formal fractions it is similar to Alexander’s Latin manuscript, but
it goes a bit further (without persevering in these experiments), showing [ed. Curtze 1902:
517] how to multiply two formal fractions, whose numerators themselves are formal
fractions.

92 As far as I can read in the manuscript, Alexander cannot agree with himself whether the ablative
of census (4th declination) should be censu or censo. His school grammar may have offered no
better assistance than mine, which also gives frūctū but domō. He probably knew his mathematics
better than the petty details of his grammar.

93 Accordingly, on fol. 46r, a tabulation of the products of powers does not include this numeration
but only the corresponding powers of 2. In this tabulation, contracted writings for powers until the
18th are used – when possible, by glyphs combined by embedding, when not by numbered sursolida –
the 17th power is thus quintß.

94 From this we may probably conclude that it is based on a later version of Alexander’s Latin
manuscript than the one we possess.
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Schreyber, Rudolff and later coß

Heinrich Schreyber’s naming of the powers by their exponents was spoken of above
(p. 41). He also knows about the use of schemes in polynomial arithmetic, and about
operations with formal fractions. He may have learned from Alexander. In the present
context there is nothing more to say about his book.

Rudolff certainly learned from Alexander (above, p. 41), and since his book was the
one that came to define coß everywhere and for as long as algebra carried this name, he
is the principal source from whom the later coß tradition until Mennher and Clavius learned
the symbols for the first nine powers, with minor variations only depending on how printers
chose to cut them; he also taught later cossists their use in schematic polynomial arithmetic
and formal fractions. As regards the general adoption of +, – and √, they were probably
already so widely spread (except perhaps √) that Rudolff was not needed.

Rudolff’s scheme for the products of powers (fol. 28v) is triangular, not quadratic,
and therefore does not produce powers above the cube of cube; on the other hand he
changes the numbering, letting number correspond to 0, and thus gets exponents.

German algebra thus did not discover the use of algebraic abbreviations and other
glyphs, nor their use in symbolic calculation. All the German writers do had already been
done in abbacus algebra. But from the Latin algebra in C 80 onward, German algebra
discovered that this kind of notation is most useful if used consistently. If we hark back
to Woepcke’s discovery of the Maghreb notation [1854: 355], he declares that[95]

the indispensable condition for characterizing a set of conventional signs as a notation is
that they are always used when it is fitting, and always in the same way.

The “notations” of the abbacus writers would thus not have been accepted by Woepcke
as algebraic notations, nor those of Regiomontanus and his German contemporaries. The
phase shift only occurred a small generation later, with the writing of the Latin algebra
in C 80.

French algebraic writings

The French scene is very different – it still recalls Pacioli’s “as many heads, so many
opinions”. Let us first look at de la Roche (cf. above, p. 35).

When introducing the algebraic powers [1520: 42r ], he refers to a variety of names
for them, using examples with coefficients 12 and 13.

Nombres linéaires: 12.1 or 12.ρ
Nombres superficiels quarrés: 12.2 or 12.

95 “la condition indispensable pour donner à des signes conventionnels quelconques le caractère d’une
notation, c’est qu’ils soient toujours employés quand il y a lieu, et toujours de la même manière”.



62 French algebraic writings

Nombres cubiques: 12.3 or 12.

Nombres quarrés de quarrés: 12.4 or 12.

In what follows, de la Roche is going to use the notation to the right: ρ, , , . ρ
is almost certainly borrowed from the Florentine tradition, but and point to early
German algebra. is indeed used for the second power in a Latin section (fol. 40r–v)
of the manuscript Leipzig, Clm 1409, which is dated 1459. It is an abbreviation for ce

(it serves elsewhere for centenarius, which leaves no doubt).[96] For “plus” he uses ṕ,
for “minus” ḿ. racine is written . These three could have been taken over from Chuquet.

Apart from that, it is not at all clear exactly how de la Roche got this notation (but
Lyon was a city with much international commerce). What seems clear is that his notations
went nowhere. Peletier (above, p. 42), who carefully listed not only the books he knew
but also those he knew about without having seen them, does not mention him in [1554]
(in the Latin version [1560: * ivv] he does, however). As to Peletier’s notations, he mostly
follows Stifel (and thus Rudolff). The first power, however, he calls racine and denotes

, and he keeps the abbreviations p and m for addition and subtraction – introducing the
term exposant, “exponent” (as already told on p. 42). As Stifel, he uses the notation for
symbolic calculations in schemes and formal fractions, without going beyond him.

Jean Borrel [Buteo 1559: 123], dealing with three powers only, uses ρ for the first
power (he knows de la Roche and is more likely to have borrowed from him than from

some Tuscan manuscript). The second power he abbreviates , and the third – both
probably his own inventions. Addition and subtraction are indicated by P and M. There
are a few schemes showing the arithmetic of polynomials. All in all, nothing beyond what
could be expected in a primer, and well below what Peletier had found in Stifel (or what
he will have found himself in de la Roche).

Gosselin (above, p. 43), as mentioned, borrows some but not all names and
abbreviations for the powers from Xylander’s translation of Diophantos. Diophantos,
followed by Xylander, constructs higher powers multiplicatively, while Gosselin produces
them by embedding (left from [Xylander 1575: 1], right from [Gosselin 1577: 4v–5r ], who
comments on the differences):

numerus, N
quadratus, Q
cubus, C
quadratoquadratum, QQ
quadratocubus, QC
cubocubus, CC

latus, L
quadratus, Q
cubus, C
quadratoquadratum, QQ
relatum primum, RP
quadratocubus, QC
relatum secundum, RS
(omitted, elsewhere) QQQ
cubocubus, CC

96 In the same section, the first power is written , a variant of .
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Xylander’s numerus, translating αριθµóς, is evidently in conflict with the inherited use
of number in the algebraic tradition. Since Xylander explains it to be latus quadrati,
Gosselin may have taken latus from him.[97]

Gosselin uses this notation consistently, also in schematic polynomial arithmetic and
formal fractions, but not for other kind of symbolic calculation. The continuation until
exactly the ninth power suggests an unconfessed inspiration from cossic writings.

Viète’s naming of powers [1591a: 4v] (“powers” in general, not the powers of the

unknown since he has several) is taken over from Xylander’s Diophantos:

The first is latus, or radix

2 quadratum

3 cubus

4 quadrato-quadratum

5 quadrato-cubus

6 cubo-cubus

7 quadrato-quadrato-cubus

The name for the seventh power goes beyond Xylander, but follows automatically from
the principle that produced the preceding ones. latus could come from Xylander (cf. above,
p. 63), but could also be a borrowing from Gosselin, or even from Cardano’s Ars magna.
radix could come from many writings from the earlier tradition – since Viète only cites
predecessors in order to blame we cannot know from where.

Viète still does not speak about “powers”, but on fol. 5r he introduces the term that
would eventually take on this meaning. Potestas designates instead the dimension of any
product of powers of different magnitudes; if (in our terms) it is a power of a single
magnitude, it is called “pure”.[98]

“Eventually”, however, was not far away. The term surfaces again in Ad logisticem

speciosam notae priores (originally planned to appear first after the Isagoge but only
published in 1631 [Witmer 1983: 9][99]). Here [ed. van Schooten 1546: 14], potestas

has taken on the modern meaning.

97 There is thus no need to postulate a borrowing from Ramus’s (anonymous and rather trite) Algebra

[1560: 2r ], whose notation is otherwise quite different.

98 The notion of algebraic “powers” thus does not descend by generalization from the Diophantos’s
use of δυναµις for the second power of the unknown and the related Euclidean usage in Elements

X, in spite of its similar translation potentia. Indirect inspiration is also improbable – Viète would
have known Xylander’s translation facultas [1575: 1]. The later French choice of puissance, however,
may well have been well have been influenced by the Diophantine usage. English “power” might
come from the French term; in [1570: 60], however, Henry Billingsley uses “power” for the geometric
δυναµις. Thomas Harriot [1631: 1], writing in Latin, takes over Viète’s terms, potestas pura vel

affecta.

99 Since Viète withheld the text, we can evidently not be sure that what was published in 1631 was
already formulated in 1591; any date before Viète’s death in 1603 is possible.
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Each single of these French writers uses his notation in a way which would make
Woepcke accept it as a genuine algebraic notation. But each of them follows his own way –
it is not possible to put them together as a “French 17th-century algebraic tradition” or
“school” comparable to the coß.[100]

100 Basing himself on different criteria François Loget [2012] reaches the same conclusion.
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function

The importance of the parenthesis was pointed out in the Introduction. A parenthesis
is what allows a whole algebraic expression to serve as the argument for a function
(speaking in modern terms) – to be embedded.

A simple variety of embedding was spoken of repeatedly in Chapter III – namely when,
for instance, the sixth power of the unknown was spoken of as the “censo of cubo” – in
modern terms, once again, as (t3)2. This way of speaking, and of understanding things,
started without being systematic with Antonio de’ Mazzinghi, and took over almost
completely in the late 15th century, a hundred years after Antonio (Viète’s use of the
multiplicative principle in 1591 being an absolute exception, imposed by his determination
to follow Diophantos).

From Pacioli onward we may therefore be tempted to see the powers as “functions”;
but if we do so we shall be aware that these “functions” allow only a very particular kind
of arguments – namely, other powers. We never see the censo of a binomial, a formal
fraction, or a root.

This kind of embedding, however, is only one kind of parenthesis. Other types can
also be found – we may be tempted to consider them “primitive” (in the sense of “early”)
but should rather see them as special-purpose parentheses.

The first special-purpose parenthesis which we find in abbacus algebra is found in
the formal fractions. This was already used in the Maghreb notations (above, p. 4), where
the transformed abbreviation for division could serve as a fraction line. In a formal fraction,
indeed, the numerator as well as the denominator are parentheses. As we have seen in
Chapter III, the use of such formal fractions is already reflected indirectly in Gherardi’s
Libro di ragioni from 1327, and they are used regularly throughout the later tradition.

Composite radicands

Another special-purpose parenthesis serves to take the root of a composite radicand.
It is expressed in varying ways.

Dardi

The first to make use of it seems to be Dardi. On fol. 9v of the Vatican manuscript
we find, for instance, “ de zonto cô de 12” (standing for ); zonto

1

4

1

4
√12

corresponds to Tuscan gionto, “joined”, and the whole expression thus means “root of,
joined with root of 12”). Others, later on, would speak of a radice generale, a radice

1

4
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universale or a radice legata (“general”, “universal” or “bound root”), mostly with the
same meaning.

Antonio – two levels

As long as we are sure that the radicand is a simple binomial, this is unambiguous.
Antonio, as we have seen (above, p. 52), uses or an encircled radice in the same
function – but since his radicands are sometimes more complex, he uses “general root”
to indicate the “outer brackets”, writing for instance “general root of one thing plus root
of 350 less one censo” (underlining represents encircling) corresponding to our

.thing 350 1 censo

was taken over by Antonio’s student Giovanni di Bartolo. In a section of the Palatino
Praticha which is said to contain problems of his (fol. 470r–478v), it is first explained (fol.
473r ) that it means that the root “has to be taken of everything that follows”. In that
passage the example “ 10 less 2 things” is given. Later on (fol. 477v) it is used repeatedly
to take the root of “25 less 10 things less 3 censi”, that is, of a trinomial.[101] This is
different from the root of a binomial which we know from Dardi, but not part of a two-
level system. In order to be sure what is means, one has to follow the calculations with
full attention.

Chuquet and de la Roche

On fol. 52r of his Triparty, Chuquet introduces the notion of a racine lyée, “bound
root”, corresponding to radice legata. He explains it by the example .26.p̄. .27. lyée d’une

ligne par dessoubz, “bound by a line below”. His explanation is less than satisfactory,
“there where before 7 was a second root, now it is 2 of 2, that is, fourth root; and 6
is which before was number”. However, in the copious calculations that follow he does
not fall into his own trap.[102] Beyond the “bound roots” he speaks (fol. 63r ) of
“composite roots” (racines composées), for instance .215.p̄. 2.10.p̄ 213.p̄. 26. The verbal
distinction does not correspond to a conceptual difference, the same symbolism covers
both unambiguously.

Chuquet’s notation would have been adequate for repeated nesting: nothing would
have prevented a double underlining in the manuscript. If I am not mistaken, Chuquet
never takes advantage of this possibility – probably because he never had the need, just
as simpler abbacus algebra rarely needed to specify the range of its joined roots because

101 An edition of this problem collection is contained in [Arrighi 1967b]. Unfortunately, Arrighi does

not distinguish from in his transcription, for which reason the manuscript has to be relied upon.

102 Others were less fortunate. The Libro di conti e mercatanzie [ed. [Gregori & Grugnetti 1998:
116] thus presumes in earnest – in perfect agreement with Chuquet’s explanation – that
√(a+√b) = 6√a+√√b.
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it rarely encountered radicands that were not either monomials or binomials. Why “take
advantage” if no advantage is offered?

He also does not take advantage of the possibility to use the notation for taking
composite expressions as arguments for other “functions”. That had an obvious reason:
As long as algebraic powers were not treated as functions that could take any algebraic
expression as their argument, there were no such other functions. (When a product of two
polynomials was needed, it could be calculated separately, rhetorically or in a scheme.)

De la Roche takes over Chuquet’s term (fol. 30v) but not his notation – that is, the
reader has to understand from context when a bound root is meant. De la Roche himself
seems not to have understood too well. As an example, he shows how to make √(5+√3)
and 3√(4+3√7) comparable, but in the calculations replaces the latter with 3√(4+√7). Then,
in order to make the two roots comparable he transforms both into sixth roots by calculating
(5+√3)3 and (4+√7)2 – unfortunately finding the first to be 170+√7500+√2352 instead of
170+√21168, and the second to be 22+√384 instead of 22+√448.

He has the good judgement not to persevere, giving the reason that the topic “serves
little in our answers to the questions”.

Mennher

Valentin Mennher’s Arithmetique seconde was printed in Antwerpen in [1556]. Mennher
was born in Kempten in Schwaben in 1520.[103] When young he worked as an accountant
in the Fugger firm, and in Fugger service he came to Antwerpen, where he later opened
a school. In 1550 he had promised this “second arithmetic” (thus stated in the preface
in 1556 – the promise must have been made in a first Arithmetic that is now lost).

The Arithmetique seconde consists of three parts. The first is a regular and well-
structured Rechenbuch in German style, the second an algebra, the third a geometry going
well beyond traditional abbacus geometries, containing both a Euclidean proof of the
Pythagorean theorem (fol. S ir ) and an Archimedean determination of the ratio between
the perimeter and the diameter of a circle.[104]

The second part, about algebra, explains on fol. F iiiir that understanding of “the high
and liberal art of arithmetic is infinite”; several questions, moreover, “cannot be solved
except by the very ingenious rule of algebra, or cos; as also commanded by the very subtle
and liberal art of geometry”. The “style and manner” of the very renowned Christoph

103 See [Meskens 2013: 14f and passim], where Mennher is discussed copiously.

104 Traditional abbacus- and Rechenmeister geometries had always accepted the approximation 22 : 7
as a quasi-axiom (as does Mennher himself in the preceding pages).

It is worth noticing that in [1564] Mennher published the “practice of spherical triangles, the
distances on the globe, clocks, shadows, and other ingenious and new mathematical questions” –
adding, thus Mennher’s preamble, to what had been done by the very learned Regiomontanus (viz,
in De triangulis) the labour of calculation.
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Rudolff has been of great help, and Mennher has found him very competent. Therefore,
he says, he has not deviated much from him, knowing well that the very renowned Michael
Stifel has renewed and augmented him much in the same High German language with
several beautiful examples – from which, however, “I have extracted a fair part of the
best only, adding other matters needed by merchants”.

Mennher [1556: F vv] refers to universal as well as bound roots (universel, V.,
respectively lié, L.). One might suspect a terminological borrowing from de la Roche, but
the suspicion seems not to be justified. On fol. H vir–v, √4+√16 and √3+√2 serve to
exemplify the racine liée; the former is determined as 2+4, showing that the racine liée

is nothing but the sum of separate roots, while the second cannot be reduced. The universal
root is exemplified by V.√20+√25, which is calculated as √(20+√25) = √(20+5) = √25 =
5; it is thus identical with Dardi’s “joined root”.

This meaning of the racine universelle is confirmed on fol. P ir. It is used if not often
then repeatedly in the book, as also in [Mennher 1565]. The racine lié is less appealed
to in both works – they just write the sum of roots without using the superfluous concept,
which Mennher may have felt obliged to introduce after having picked it up from
somewhere (if from de la Roche, understanding badly what was meant; but the
misunderstanding may have been the responsibility of an intermediary – where we can
control him, Mennher is an intelligent reader). However that may be, Mennher understood
what he was doing himself.

Cardano, Tartaglia and Bombelli

In the Ars magna, Cardano needed the same nested structure as once Antonio. His
radix universalis, abbreviated V is the usual “bound root” – on fol. 9v, his

V:cubica 19:p:3 is thus 3√(√19+3). On fol. 14r, where the nested structure is needed,
he introduces a new term: “ universalissima 10 p: V:100 m:4 pos” stands for
√(10+√(100–4t)).[105] radix universalissima thus corresponds to Antonio’s “general root”,
and Cardano’s V to Antonio’s (cf. above, p. 52).

The cumbersome term leaves little doubt that Cardano had had to reinvent. In the
second edition [Cardano 1570: 26], he replaces universalissima with tota – inserting,
however, a parenthesis “(quam universalissimam appellare solent)”, “(which was habitually
called most universal)”.[106]

105
pos stands for the “position”, that is, for the first power of the unknown.

106 Cardano, as we see, knew well what we may call the “rhetorical parenthesis”, an aside in a written
text. That was not new, this parenthesis in this shape was in use at least since the late 15th century
(Pacioli employs it in the Summa in 1494). [Parkes 2016: 314] shows another example from the
same year. Different shapes can be found in manuscripts from the late 14th century (ibid., p. 213,
305).

Florian Cajori states [1928: I, 392] that Cardano uses round brackets a single time in the Ars
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Tartaglia may have been the first to employ round brackets to delimit algebraic
parentheses – perhaps for disambiguation of universal roots but in any case without system.
He introduces these roots in La seconda parte del general trattato [1556: 81v], explaining
the meaning of “ V.8 men 60” (without the brackets). Returning to the topic on fol.
168r he introduces a universal root of the trinomial 10+√7+√5, writing it
“ V.10 piu 7. piu 5” (still without brackets). For a while he works with this ambiguous
notation, but on fol. 167v he states the sum of 12 and “ V.20 piu 6” to be
“12 piu V.(20 piu 6”). This is used a few times, and then on fol. 169r Tartaglia returns
to his old ways, using the left round bracket (with no right counterpart) for other purposes.
If disambiguation was aimed at, the attempt was not successful. Clavius [1608: 132–134,
159] uses the round brackets in such expressions as “√ (12+√ 32)+√ (12–√ 32)” and
is likely to have picked them up directly or indirectly from Tartaglia.

Bombelli’s L’algebra [1572] was presented in general as an attempt to improve
Cardano’s exposition in the Ars magna, “in which he explained much about this science
[algebra], but obscurely in the saying” (5th page of the unpaginated letter “to the readers”).
He tries (successfully) to do so on the present account, too.

Bombelli prefers the name radice legata but also knows radice universale (p. 99).
If the radicand is a binomial, he mostly abbreviates R.q legata or R.c legata for bound
square respectively cube root. If the radicand is a tri- or higher polynomial (and sometimes

if it is a binomial), he encloses it between crotchets, an initial L and a final inverted Γ

(dropping the word legata). The system allows nesting, for instance (p. 355) with three
levels

R.q.L R.c.L 4608.p.R.q. 4456448 .p.R.c.L4608.m.R.q.4456448 .p.16Γ Γ Γ

corresponding to

3

4608 4456448
3

4608 4456558 16

We might believe the initial crotchet L to be an abbreviation of legata, and that may
perhaps have been the typesetters idea. It is not what Bombelli thought – in the manuscript
Bombelli had used “beds” which made the nesting visually much more
obvious than in the print – see the facsimiles in [Bortolotti 1929: 6, 9]. That cannot have
been easy for the printer, who therefore showed only the corners of the beds.

magna. His reference [Cardano 1663: 438] turns out to be instead to the Sermo de plus & minus,
a manuscript which was never published by Cardano himself but written in response to Bombelli’s
L’algebra, that is, no earlier than 1572 [Confalonieri 2013: 338]. It is not at all clear that an algebraic
parenthesis should be meant – the brackets are used in a scheme, and enclose (with a misprint, 10
instead of 1) an expression that is to be squared, and below (after a dubious calculation) the result,
as also stated in the text. The whole thing has to do with Cardano’s vain struggle with Bombelli’s
imaginary numbers.
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So, when he needed it, Bombelli could invent notations;[107] but he did not get the
idea to use this parenthesis for purposes beyond the representation of complicated
radicands – and probably had no occasion to get it because he had no use for it.

The substitutes for and a dubious step toward a general parenthesis function

It happened, of course, that abbacus masters formulated problems or performed
calculations where we would find it natural to make use of parentheses. Then they did
exactly as we do when making calculations on a pocket calculator or when writing a simple
computer problem: they calculated what we would make a parenthesis, and saved the
outcome, retrieving it later when it had to be used in further calculations. We may look
at one example (there are many), taken from Pacioli’s Summa [1494: 107v]:

If a quantity be divided into 2 parts, which are mutually divided; and the two results are
joined together; and save the sum. And then, if you square each of the said parts; and the
squares joined together; and this sum divided in the saved sum; from which shall come
a determined number. I say that who makes of the first quantity two parts; where the surface
of one in the other makes the said number; will always have the said parts.

In symbols indeed

= = ab .
a 2 b 2

a

b

b

a

ab (a 2 b 2)

a 2 b 2

As we see, the sum a/b + b/a is kept together as one number by being saved and then, when
it is to be used, retrieved.[108]

When polynomials were multiplied in schemes a schacchiera, each polynomial was
written in a single line; for instance, in the Florentine Tratato [ed. Franci & Pancanti 1988:
11]

6 things and 8 and 9

6 things and 8 and 9

Here, each line can also be considered a special-purpose parenthesis.

107 We may also think of his new notation for positive and negative imaginary numbers, “più di meno”
and “meno di meno” – for instance [Bombelli 1572: 170], “2.p.di m. 2” where Euler would write

2+2 and we perhaps 2+2i.1
108 We may remember the tentative iterated formal fractions from Initium algebra (not much later
than Pacioli). If this principle had been unfolded, it could have been used to formulate Pacioli’s
theorem; but it would have been cumbersome, and the reduction of the denominator would not have
been easier. There was certainly no incentive to develop whatever hunch Pacioli may have had into
a workable technique.
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All in all, abbacus algebra developed a small handful of special-purpose parentheses
before 1500 (and then left matters there):
– the naming of powers by embedding;
– the use of formal fractions;
– ways to keep together composite radicands;
– the substitute-parenthesis achieved by saving and retrieving;
– the use of schemes to handle complicated calculations
but it never approached the unification of these into a single technique or concept.

When needed, the abbacus writers could develop new tools; as we have seen, Antonio
created a way to express a nested parenthesis, and in the next chapter we shall encounter
other examples of creativity. We may suppose that the need to create a general parenthesis
did not materialize within the mathematical practice in which they were involved.

Viète

Viète’s 17th-century editor and translators appear to have believed that Viète had got
the idea of a the general parenthesis; at least they presupposed it in what they produced.
The original editions of Viète’s work shows that this is a mistake, a 17th-century
reinterpretation of late-16th-century algebra.

In Zeteticorum libri V [Viète 1591b], a notation is occasionally

Figure 6. Viète’s

quasi-parentheses.

Vièteused which with hindsight could be understood as an algebraic
parenthesis. Curly brackets, or a single brace, serve to indicate that
an expression going over several lines is meant to be kept together –
but not in order to be operated upon as a whole. So, on p. 3r we find
the upper part of Figure 6; van Schooten [1646: 45] sees that there
is no need for specification of a parenthesis – the fraction line
suffices – and writes . Vasset [1630: 50] and VaulezardB in H, B in A

F
[1630: 38] offer something very similar in their translations.

On Viète’s fol. 18r we see that a sole left brace can be used in the same function,
and once again van Schooten (p. 70), Vasset (p. 142) and Vaulezard (p. 167) simply write
numerator and denominator on a single line each. On Viète’s fol. 17r we see that a single
right brace may also stand along the numerator alone – and even here, van Schooten (p.
69), Vasset (p. 138) and Vaulezard (p. 161) simply write the numerator in one line.

On Viète’s fol. 15r, on the other hand, we find something which the 17th-century editors
and translators would see differently, even though nothing in Viète’s original text suggests
he saw any difference – namely the lower part of Figure 6. In this case, van Schooten
(p. 65) and Vaulezard (p. 139) conserve the brace, seeing that it has a function. Vasset
(p. 125) conserves the bracket but locates it after the fraction (containing both numerator
and denominator), where it is actually superfluous; but he must have understood it as having
a function in Viète’s text (the mistake may have been the responsibility of the printer).

It is tempting to see this reinterpretation of Viète’s text as a reflection of a pull
produced by the development of 17th-century mathematics (it is noteworthy that both Vasset
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and Vaulezard wrote before Descartes): once the need for a more general parenthesis
function was there, it made Vasset and Vaulezard read it into the text under their eyes,
eliminating those braces that were superfluous and conserving those that had a parenthesis-
defining function. Van Schooten’s situation is evidently different, which makes him less
significant: he was close to Descartes; he wrote after 1637; and he had been involved in
the preparation of Descartes’ Geometrie well before it was published [van Randenborgh
2012].

In any case, Vasset’s and Vaulezard’s readings of Viète reflect a need but could not
fulfil it. That had to wait, not only until Descartes but, as we shall see, until Descartes’

readers.
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The last strand in our cord is the appeal to several algebraic unknowns. Here, “several
algebraic unknowns” are to be distinguished from a plurality of unknown quantities like
the possessions of three men which are then expressed in terms of a single algebraic
unknown. Unknowns become “algebraic” when they are submitted directly to algebraic
operations without the mediation of other entities.

Several unknowns in Arabic and post-Arabic algebra

The main topic of the present chapter is the appearance of several unknowns in abbacus
and cossic algebra. A useful background, however, is the wielding of several unknown
in Arabic algebra and in two Latin works that depend directly on it: the Liber mahameleth

and the Liber abbaci.

Arabic use

The Arabic use of coin names as names for extra algebraic unknowns should be
familiar even to those historians of mathematics who read only European languages.
Heinrich Suter showed the system in use in Abū Kāmil’s Kitāb al-Tayr, “Book on Fowls”
in [1910], though only his footnotes explain that the x, y, z and u of his translation
correspond to šai (“thing”), dı̄nār, fals and khātam. Recently the same short treatise has
been edited and translated into French by Roshdi Rashed [2012: 731–761]. That volume
also contains an edition and translation of Abū Kāmil’s Algebra, where similarly several
unknowns are used repeatedly (pp. 368–371, 394–397, 400f, 406f, 408–411, 430f, 654–677).

We may look at the beginning of two of these examples. Pp. 396f proposes an
alternative solution to the problem (I translate from Rashed’s French)

You divide ten into two parts, you divide the large by the smaller, then you add the quotient
to ten, then you multiply the sum by the smaller part, and one has forty-six dirhams.

A first solution identifies the smaller part with a thing, and obtains an equation with a
single unknown. Then the alternative,

posit that one of the things be a thing and the other ten less a thing, and then you say,
we have divided a thing by ten less a thing, and one gets a dı̄nar. And we have divided
ten less a thing by a thing, and one gets a fals. We add them, one has a dı̄nar plus a fals.
... .

As we see, dı̄nar and fals are introduced here as auxiliary unknowns. They facilitate the
formulation of the argument but are not strictly necessary.
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In the indeterminate fowl-problems, in contrast, the plurality of unknowns is primary.
The first (pp. 736f ) begins:

If one pays to you hundred dirhams, and says to you: buy with this hundred fowl of three
kinds, ducks, chickens and sparrows. Each of the ducks is five, twenty sparrows are a
dirham, and the chickens are each a dirham.

One reasons like this: One takes the [number of] ducks a thing, five things of dirhams;
the [number of] sparrows a dı̄nar, half a tenth of dı̄nar of dirhams. Some dirhams remain,
hundred dirhams less five things less the half of a tenth of a dı̄nar [of dirhams]. ... .

But Abū Kāmil may also use other names. This happens in another divided-ten problem
in the Algebra (p. 410). In letter formalism:

10 = a+b , ( a/b +10) ( b/a +10) = 122 2/3 .

Abū Kāmil posits a/b to be a “large thing” (presupposing a > b ), and b/a to be a “small
thing”. Then (R stands for the “large thing”, r for the “small thing“),

(R+10) (r+10) = 122 2/3 ,

whence, since rR = 1,

1+10 (R+r )+100 = 122 2/3 ,

from which follows

R+r = 2 1/6 .

Thereby, the problem is reduced to

10 = a+b , a/b + b/a = 2 1/6 ,

already dealt with by Abū Kāmil.
Abū Kāmil feels no need to explain this appeal to several unknowns.[109] He

introduces nothing new or unfamiliar.

Abū Kāmil was not the only Arabic algebraic author who invented names of extra
unknowns freely. In one problem, al-Karajı̄ [ed., trans. Woepcke 1853: 141] uses šai

(“thing”) and qasm (“part”). In another one (p. 139), his unknowns are šai and qist,
“share”/“measure”.; even qist can thus have given rise to a translation “part”. As we see,
here at least al-Karajı̄ does not follow the habit to use coin names for unknowns beyond
the thing .

Around the mid-13th century, “a portion” is used as the second unknown by the Iranian
jurist-mathematician al-Zanjānı̄ in a hundred-fowl problem, see [Sammarchi 2019: 52].
The Arabic term is not mentioned but might be either qasm or qist. The problem is not

109 The only explanation found is on p. 662f, where Abū Kāmil explains to use the term “kind” as
a common name for dirham, dı̄nar or fals or other kind. Evidently this gives a name to a category
whose members are already supposed to be familiar singly.
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borrowed from al-Karajı̄, but al-Zanjānı̄ knew al-Karajı̄’s algebraic writings and may have
been inspired.

These are the examples I know from the few Arabic algebraic works that are accessible
in European languages, either translated or in paraphrase. There will certainly be many
more.

Liber mahameleth

The Liber mahameleth is known from a translation prepared by Domingo Gundisalvi
or in his environment in Toledo around 1160 – in any case a free translation, in Gundisalvi’
style. The original was probably made in al-Andalus a few decades before,[110] but that
is unimportant for the present point. Here we consider what was made available in Latin.

Internal references show that the treatise originally contained as systematic presentation
of algebra, but that part of the work is absent from all manuscripts and may never have
been translated. Many problems, however, are solved secundum algebra, and two of these
[ed. Sesiano 2014: 258, 259f ] operate with the two unknowns res and dragma.

Usually, as we know, dragma was used as the “unit” for pure numbers, but that is
not the case here (the monetary unit used is nummus, “coin”). For readers, however, this
may have presented a difficulty. Matters will not have been facilitated by the formulations
of the problems, both of which deal with a purchase “of two different things”, of which
one is then identified in the algebraic solution with the thing and the other with the dragma.
In any case I have noticed no evidence that any reader was ever inspired by these problems,
even though the treatise as a whole had a modest impact. What was supposed to go by
itself by Abū Kāmil was not obvious to readers of the Liber mahameleth.

Fibonacci

The Liber mahameleth and Fibonacci’s Liber abbaci are parallel endeavours, both
presenting practical arithmetic “from a higher vantage point” (to speak with Felix Klein).
It is next to certain, however, that Fibonacci did not know about the Liber mahameleth,
although there is strong evidence that he used other material already translated from the
Arabic into Latin and probably translated in the Iberian Peninsula [Høyrup 2021b, passim].

Fibonacci’s way to use several algebraic unknowns is also wholly different from what
we see in the Liber mahameleth. Most instances occur in the Liber abbaci, but one is found
in the Flos.

The latter [ed. Boncompagni 1862: 236][111] (a pure-number version of the classical
recreational riddle about buying a horse) runs as follows (emphasis added in order to
facilitate reading):[112]

110 See [Høyrup 2021a: 42–44].

111 Already observed by Vogel [1971: 610].

112 In a similar problem (though with only four participants), Abū Kāmil makes use of four unknowns
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five numbers, of which the first with the half of the second and third and fourth makes
as much as the second with the third part of the third and fourth and fifth numbers, and
as much as the third with the fourth part of the fourth and the fifth and the first numbers,
and also as much as the fourth with the fifth part of the fifth and the first and the second
numbers, and besides as much as the fifth number with the sixth part of the first and the
second and the third numbers.

In symbolic abbreviation:

A + 1/2(B + C + D ) = B + 1/3(C + D + E ) = C + 1/4(D + E + A ) =
D + 1/5(E + A + B ) = E + 1/6(A + B + C ) .

It would not be easy to solve this indeterminate problem without some kind of algebraic
reflection or calculation. Fibonacci goes on:

In order to find this, I thus posited[113] for the first number causa,[114] for the fifth
thing, and for the number to which they are equal under the given conditions, I randomly
posited 17.

After protracted arguments and reduction (almost 700 words), this yields two equations:

thing = (3 – 1/33 )causa + 320/33

and

thing + 8/15causa = 1513/15 .

Inserting the former into the latter and multiplying by 165 Fibonacci finds that

578causa = 2023

whence

causa = 31/2 .

Preferring integers, and knowing that the problem is indeterminate (though not saying that
it is), Fibonacci instead chooses causa = A = 7, and derives with further intricate and
somewhat elliptic arguments that B will then be 10, C will be 19, D will be 25, and E

will be 29.

[ed. trans. Rashed 2012: 654ff ].

113 The Flos reports how Fibonacci solved problems with which he had been confronted, which
explains this first-person singular perfect (posui ).

114 In medieval Latin, causa had come to sometimes mean an “object” or “movable thing”, whence
Italian cosa and French chose for “thing”. Fibonacci is likely to have taken the term from medieval
Catalan or Castilian, cf. [Costa & Terrés 2001: 41] and [Corominas & Paqual 1980: I, 928]. Provençal
is also a possibility, cf. [Raynouard 1838: I, 358].
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The use of coin names for unknowns turns up once in the Liber abbaci, namely in
the collection of algebraic problems in chapter 15 [ed. Giusti 2020: 658–661]. In an
alternative solution to this divided-ten problem

I divided 10 in two parts, and divided the larger by the smaller, and the smaller by the
larger; and aggregated that which resulted from the division, and they were 5 denarii

Fibonacci suggests that

you posit one of the two parts a thing, and the other certainly 10 less a thing. And let from
the division of 10 less a thing in a thing a denarius result.

Unfortunately, Fibonacci also uses denarius as the “unit” for pure numbers, and the
calculations become meaningless.[115] I have analyzed to procedure in detail in [2019b:
32–35], and there is no need to repeat. It is obvious, however, that Fibonacci copies from
as source and does not know the habit to use coin names for unknowns. The problem
belongs within a whole cluster borrowed from an already existing Latin translation of a
treatise descending from Abū Kāmil’s Algebra, and mostly Fibonacci understands it so
well that he can change its approach when he does not like it [Høyrup 2021b: 35–38; 2022:
180–183]. On this point, however, he does not understand and tries to make the best of
it.

More interesting is what he does in a “purse-finding problem” in Chapter 12 [ed. Giusti
2020: 355]:

Two men, who have denari, find a purse containing denari. When they have found it, the
first says to the second, “if I get the denari in the purse together with the denari I have,
then I shall have three times as much as you”. Against which the other answered, “and
if I get the denari of the purse together with my denari, I shall have four times as much
as you”.

A first solution goes through some arithmetical transformations and then applies a single
false position. An alternative solution is made by regula recta (above, p. 31) (not identified
by name here). The possession of the first man is posited to be a thing, and then Fibonacci
operates with the thing and the purse (bursa) on an equal footing. Since thing + purse is
thrice B, B must be 1/3 (thing + purse). Therefore, if the second man gets the purse, he will
have purse + 1/3 purse + 1/3 thing, which will be 4thing. Therefore 4purse = 11thing. In
consequence, p : A = 11 : 4.

Since the purse conserves its name while changing its role, one needs to read attentively
in order to discover that two algebraic unknowns are in play.

115 Giusti, presupposing that correct calculations are intended, corrects the text. His critical apparatus
as well as Baldassare Boncompagni’s edition of a single manuscript [1857: 435f ] shows what is
really in the text.
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Another instance [ed. Giusti 2020: 426] turns up within a sequence of problems about
composite travels. The first of these [ed. Giusti 2020: 417] runs like this:

Somebody proceeding to Lucca made double there, and disbursed 12 δ [denarii]. Going
out from there he went on to Florence; and made double there, and disbursed 12 δ. As
he got back to Pisa, and doubled there, and disbursed 12 δ, nothing is said to remain for
him. It is asked how much he had in the beginning.

This could be solved step by step backwards, as mostly done: Before disbursing 12 δ in
Pisa, he has 12 δ, that is, coming to Pisa he must have 6 δ, which have been left over
in Florence after he disbursed 12 δ there. Before disbursing 12 δ in Florence he therefore
had 18 δ, and coming to Florence hence 9 δ. Etc.

Fibonacci instead makes the tacit false position that the initial capital is 1 δ. He
prescribes a sequence of unexplained numerical steps, whose underlying explanation is
this: Without disbursements, the initial 1 δ would grow to a “Pisa value” of 8 δ. Actually,
however, it grows to equal the Pisa value of the disbursements, which is
( 2 2 + 2 + 1) 12 δ = 84 δ.

The following problems are more complex, but the basic idea underlying the solutions
remains the same.

Yet for this problem [ed. Giusti 2020: 426] that will not do:

Again, in a first travel somebody made double; in the second, of two, three; in the third,
of three, 4; in the fourth, of 4, 5. And in the first travel he expended I do not known how
much; in the second, he expended 3 more than in the first; in the third, 2 more than in
the second; in the fourth, 2 more than in the third; and it is said that in the end nothing
remained for him. And let the expenditures and his capital be given in integers. We
therefore posit by regula recta that his capital was an amount [summa], and the first
expenditure a thing.

This time Fibonacci makes the calculation stepwise, positing explicitly amount and
thing as algebraic unknowns. We observe that Fibonacci knows the problem to be
indeterminate, which allows him to ask for a solution in integers.

After the first travel, our merchant is seen to possess 2amount – thing; after the second,
he has 3amount –21/2thing – 3δ; etc. In this way we end up with the rhetorical equation

5amount – 65/12thing – 181/4δ = 0

or, “if all-over 65/12thing and 181/4δ are added”,

5amount = 65/12thing + 181/4δ

with the request that amount and thing have to be integers. With a clever stepwise
procedure Fibonacci finds as possible solution the amount to be 46, and the thing to be
33. Since the equation can be transformed into 60amount = 77thing + 219δ, other solutions
are found by adding
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as many times as you will 60 to the first expenditure, that is, to 33, and as many times
77 to the capital that was found, that is to 46, and you will have what was asked for in
ways without end.

In a variant of the problem the traveller is left in the end with a net profit of 12 δ,
in total thus with the initial capital and 12 δ. Here Fibonacci applies the regula versa,
starting the construction of the equation from the final instead of the initial situation but
using the same two unknowns.

A last instance of interest turns up in the alternative solution “according to the
investigation of proportions” of a problem about three men having denarii [ed. Giusti 2020:
529],

the first asks the last two for 1/3 [of what they have], and states that then he shall have
14; the second asks the third for 1/4 of his denarii, and says he shall then have 17 denarii;

the third, indeed, asks the first for 1/5 of his denarii, and says he shall have 19 denarii.

The alternative solution [ed. Giusti 2020: 530f ] asks to

posit that the second and the third man have a thing. Therefore the first has 14, less a third
of a thing. Then posit that the third has a part of a thing. Therefore the second has a thing,
less a part.

This gives the equations

11/12thing – 3/4part = 131/2 , 4/5part + 2/15thing = 161/5 ,

of which the latter after multiplication by 5/6 becomes

2/3part + 1/9thing = 131/2 .

The right-hand side being equal, the ratio r : p can be determined, whence also the ratio
r – p : p. This leads to the solution.

The name “part of a thing” looks strange but might be borrowed from the Arabic
tradition – it is suspiciously close to what was reported above (p. 74) from al-Karajı̄ and
al-Zanjānı̄.

As we shall see below (p. 98), there are traces in Fibonacci’s text that he made secret
use of some unidentified tool (probably line diagrams) which allowed him to work
algebraically with many unknowns. However, since nobody guessed at the time, this is
not pertinent to what we are dealing with here.

Abbacus occurrences of several unknowns around 1400

Two almost contemporary abbacus treatises that were discussed in earlier chapters
make use of two unknowns. Their ways are completely different, and none of them draw
directly on Fibonacci or on anything Arabic I can identify.
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Antonio de’ Mazzinghi

Antonio’s Fioretti were mentioned above (p. 27), and it was pointed out that what
we have is a philologically conscientious copy of a work in progress.[116] This allows
us to follow how Antonio gradually develops a technique for working with several
unknowns, and to conclude that his idea is original and not borrowed. His use is also
original, and not related to what Fibonacci or other predecessors had done.

The problems are numbered in the manuscript – almost certainly by Antonio himself.
I shall use this numbering for references in the following discussion.

The first step toward two unknowns is taken in #9. Here, two numbers are asked for
– for brevity A and B – such that

AB = 8 , A2 + B 2 = 27 .

A first solution [ed. Arrighi 1967a: 28], “though the case does not come in discrete
quantity”, makes use of Elements II.4, according to which (when it is read as dealing with
“quantities” and not line segments)

A2 + B 2 + 2AB = (A + B )2 .

This leads to

A = , B = ,10 3

4
2 3

4
10 3

4
2 3

4

and also tells us that Antonio’s use of “quantity” has nothing to do with that of Aristotelian
or scholastic philosophy (where it would refer to lengths, weights and other continuous
magnitudes, and be opposed to numbers). A “quantity”, for Antonio, is a number or, when
needed (as here), an expression involving radicals.

Next Antonio explains that

we can also make it by the equations [aguagliamenti] of algebra; and that is that we posit
that the first quantity[117] is a thing less the root of some quantity, and the other is a thing

plus the root of some quantity. Now you will multiply the first quantity [A ] by itself and the
second quantity [B ] by itself, and you will join together, and you will have 2 censi and
an unknown quantity, which unknown quantity is that which there is from 2 censi until
27, which is 27 less 2 censi, where the multiplication of these quantities [those of which
the square root was taken] is 131/2 less a censo. The smaller part is thus a thing minus the
root of 131/2 less a censo, and the other is a thing plus the root of 131/2 less 1 censo. [...].

116 Fols 451r–474v in Benedetto’s Praticha. The transcription published by Arrighi [1967a] is
convenient but should be controlled against the manuscript.

117 The two numbers of the statement have now become “quantities” – Antonio often replaces one
word by the other. As we shall see in the following lines, that creates some confusion, only to be
kept under control by keen unspoken awareness of what the various “quantities” refer to. Further
on, however, Antonio turns out to be aware of the difficulty and to know how to circumvent it.



Chapter V. Several unknowns 81

A procedure using the two algebraic unknowns thing and (some) quantity (say, q) would
have started with these steps (C stands for censo):

A = t + √q , B = t – √q

A2 + B 2 = 2C + 2(√q)2 = 2C + 2q

whence

q = 131/2 – C .

This corresponds precisely to the numerical steps in Antonio’s argument, and obviously
to his understanding. But what he does can instead be expressed

a = t + √? , b = t – √?
a2 + b2 = 2C + ?? ,

and the fact that “??” equals two times “?” remains private knowledge.
From this point onward, the method is algebraic, but with only one unknown (and

the procedure is impeccable).

In the next problem (#10) [ed. Arrighi 1967a: 30] we read:

Find two numbers whose squares are 100, and the multiplication of one by the other is
5 less than the squared difference. Posit that the first number be a thing plus the root of
some quantity, and the second be a thing less the root of some quantity, and multiply each
number by itself and join the squares, they make two censi and something not known.
And these squares should make up 100. Whence this unknown something is the difference
there is from 100 to 2 censi, which is 100 less 2 censi. [...].

Antonio here comes closer but still does not fully implement the possibility of working
algebraically with two unknowns. He is preparing mentally, however, and in problem #18
[ed. Arrighi 1967a: 41] the idea is unfolded:

Find two numbers which, one multiplied with the other, make as much as the difference
squared, and then, when one is divided by the other and the other by the one and these
are joined together make as much as these numbers joined together. Posit the first number
to be a quantity less a thing, and posit that the second be the same quantity plus a thing.
Now it is up to us to find what this quantity may be, which we will do in this way. We
say that one part in the other make as much as to multiply the difference there is from
one part to the other in itself. And to multiply the difference there is from one part to the
other in itself makes 4 censi because the difference there is from a quantity plus a thing

to a quantity less a thing is 2 things, and 2 things multiplied in itself make 4 censi. Now
if you multiply a quantity less a thing by a quantity plus a thing they make the square
of this quantity less a censo; so the square of this quantity is 5 censi. And if the square
of this quantity is 5 censi, then the quantity is the root of 5 censi; whence we have made
clear that this quantity is the root of 5 censi. And therefore the first number was the root
of 5 censi less a thing and the second number was the root of 5 censi plus a thing. We
have thus found 2 numbers which, one multiplied in the other, make as much as to multiply
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the difference of the said numbers in itself; and one is the root of 5 censi less a thing, the
other is the root of 5 censi plus a thing. Now remains for us to see whether one divided
by the other and the other by the one and these two results joined together make as much
as the said numbers. Where you will divide the root of 5 censi less a thing by the root
of 5 censi plus a thing, this results, that is, . And then you will divide ther. of 5 C less 1ρ

r. of 5 C plus 1ρ
root of 5 censi plus 1 thing by the root of 5 censi less a thing, results. Andr. of 5 C plus 1ρ

r. of 5 C less 1ρ
these two results should be joined together; where you will multiply the root of 5 censi

plus a thing across,[118] that is, by the root of 5 censi plus a thing, they make censi plus
the root of 20 censi of censo; and further multiply root of 5 censi less a thing across, that
is, by root of 5 censi less a thing, they make 6 censi less root of 20 censi of censo. Which,
joined with 6 censi and root of 20 censi of censo,[119] make 12 censi. And this quantity
we should divide in the multiplication of the root of 5 censi less a thing in root of 5 censi

plus a thing, which multiplication is 4 censi because root of 5 censi in root of 5 censi make
5 censi, and a thing plus multiplied in a thing less make a censo less, and when it is
detracted from 5 censi, 4 censi remain, and multiplying 1 thing plus by root of 5 censi

and 1 thing less by root of 5 censi, their joining makes 0. So the said multiplication, as
I have said, is 4 censi, so these two results are 12 censi divided in 4 censi, from which
comes 3. And we want they should make as much as the sum of the said numbers, whence
it is needed to join the root of 5 censi less a thing with the root of 5 censi plus a thing,
they make 2 times the root of 5 censi, which is the root of 20 censi. Whence the joining
of the said numbers is the root of 20 censi, and we say that is should be 3; so 3 is equal
to the root of 20 censi. Now multiply each part in itself, and you will have 9 to be equal
to 20 censi; so that, when it is brought to one censo, you will have that the censo will
be equal to 9/20. So the thing is equal to the root of 9/20, and if the thing is equal to the root
of 9/20, the censo will be worth its square, that is, 9/20. So the first number, which was the
root of 5 censi plus a thing, was 11/2 plus the root of 9/20; and the second number, which
was the root of 5 censi less a thing, was 11/2 less the root of 9/20. And so is found the said
two numbers [...].

This may have gone beyond what Antonio was able to do by mental implicit use of a
second unknown, or at least beyond what he found it possible to convey to an imagined
reader in this way. In any case he now makes the use of two unknowns explicit, and also
chooses a more stringent language, pointing out that the same quantity is meant in the
two positions. The remark that now “it is up to us to find what this quantity may be” shows
awareness that something unfamiliar has happened – it is never explained that the thing

has to be found, neither here nor elsewhere in problems with a single algebraic unknown.
From this point onward, quantity in general use (cf. note 117) disappears from all

problem solutions where that term is used to designate one of two algebraic unknowns

118 The cross-multiplication is shown in a symbolic operation on the two formal fractions in the margin
in the manuscript (fol. 458v).

119 Arrighi has 20 censi only, but the manuscript (fol. 458v) is correct.
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(but not from other problems – in these quantity is still used profusely.[120]

The procedure can be translated into more familiar symbols as follows:

AB = (A – B )2 , A/B + B/A = A +B

with the algebraic positions

A = q – t , B = q + t .

Then

(A – B )2 = 4C , while AB = q 2 – C ,

whence

q 2 = 5C ,

that is,

q = .5C

In consequence we have the preliminary result

A = , B = .5C t 5C t

Inserting this in the other condition we get

=A

B

B

A

√(5C ) t

√(5C ) t

√(5C ) t

√(5C ) t

which, after cross-multiplication, becomes

= = = = 3 .A

B

B

A

(√(5C ) t )2 (√(5C ) t)2

5C C

6C 6C

4C

12C

4C

Therefore, since

A + B = 2q = 2√(5C ) ,

= = 3 ,2 5C 20 C

whence

20C = 9 .

Tacitly interchanging “first” and “second” number, Antonio thereby obtains that

B = 11/2 + √9/20 , A = 11/2 – √9/20 .

This would probably have been very difficult even for a mathematician of Antonio’s level
without the explicit use of two unknowns. Once Antonio had decided to make the step,

120 There are two apparent exceptions, one in the present problem (“this quantity we should divide
in the multiplication of the root of 5 censi less a thing in root of 5 censi plus a thing”), one in
problem 28 [ed. Arrighi 1967a: 61f ]. Both, however, turn up after the algebraic quantity has been
eliminated, and the problem thus reduced to one with a single unknown thing.
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things were easy. As can be seen in marginal calculations, Antonio routinely performed
formal calculations involving ρ and c or c o (standing for censo).

Now, as the method has been developed and introduced, Antonio applies it even in
problem #19 [ed. Arrighi 1967a: 43] although it could have been solved in the same way
as problems #9 and #10:

Find two numbers so that the root of one multiplied by the root of the other be 20 less
than the numbers joined together, and their squares joined together be 700. It is asked,
which are the said numbers? You will make position that the first number be a thing less
some quantity, and posit that the other number be a thing plus some quantity. And then
you take the square of the first, which we said was one thing less one quantity, and its
square is one censo and the square of this quantity less the multiplication of this quantity

in a thing. And the square of the second number, which we say is a thing and some
quantity, is a censo and the square of this quantity plus the multiplication of this quantity
in a thing.[121] Which, joined together, make 2 censi and 2 squares of 2 quantities.[122]

And we say that they should make 700, whence one of these squares is 350 less one censo.
This quantity is thus the root of 350 less once censo. And we posited that the first number
was one thing less one quantity, that is was hence one thing less the root of 350 less one
censo. And the second number, which was posited to be a thing and a quantity, was one
thing and root of 350 less one censo. And thus we have solved a part of our question, that
is, to find two numbers whose squares joined together make 700. Now it remains for us
to see what it makes to multiply the root of one by the root of the other. Therefore you
thus have to multiply the general root of one thing less root of 350 less one censo by the
general root of one thing plus root of 350 less one censo,[123] they make root of 2 censi

less 350; and this is their multiplication. For these matters one has to keep the eye keen,
I mean of the mind and the intellect, because even though they seem rather easy, none
the less, who is not accustomed will err. Therefore we have thus found that this
multiplication is the root of 2 censi less 350, and this we say is 20 less than the numbers
joined together. And the said numbers joined together are 2 things, that is joining a thing

less root of 350 less a censo with a thing plus root of 350 less a censo, which indeed make
2 things. Whence we have that 2 things less 20 are equal to the root of 2 censi less 350;
whence, in order not to have the names of roots, multiply each part in itself, and you will
have that root of 2 censi less 350 multiplied in itself make 2 censi less 350, and 2 things

less 20 multiplied in itself make 4 censi and 400 less 80 things. So 2 censi less 350 are
equal to 4 censi and 400 less 80 things. Where you should make equal the parts giving

121 Evidently, the product of quantity and thing should be taken twice here as well as in the square
of the first number. Antonio knew perfectly well how to multiply two binomials (see, for instance,
the marginal calculation reproduced on p. 52). Since the “error” is repeated in subsequent problems,
we may be sure that Antonio abbreviates, knowing that the two elliptical expressions cancel each
other (as they also do in that calculation).

122 2 quadrati di 2 quantità, meaning “the two squares coming from the two distinct quantities”.

123 Cf. above, page 52.
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to each part 80 things and removing 2 censi; and we shall have that 2 censi and 740 are
equal to 80 things, which is the fifth rule.[124] Where you bring to one censo, and you
will have one censo and 375 equal to 40 things. Where you will halve the things, and the
half be 20, multiply in itself, they make 400, detract the number, they will make 25, that
is, detracting 375 from 400, of which 25 take the root, which is 5, and detract it from 25,
15 remain. And you will say that the thing is worth 15, and the censo will be worth its
square, which is 225. Whence the first number, which we posited that it was a thing less
root of 350 less a censo, detract 225, which is worth the censo, from 350, 125 remain.
And you will say, one part was 15 less root of 125, and the second number was 15 plus
root of 125. [...].

In our usual translation:

√A √B = A + B – 20 , A2 + B 2 = 700 ,

with the position

A = t – q , B = t + q ,

where Antonio no longer feels the need to point out that the two “some quantity” (alchuna

quantità) refers to the same quantity. He does not quite return to the formulation of
problems 9 and 10, A = t – √q, B = t + √q, since with the explicit position of q he can now
operate freely with its square. Antonio calculates

A2 = C + q2 – [2]qt , B 2 = C + q2 + [2]qt ,

whence

2C + 2q2 = 700 , q2 = 350 – C , q = √(350 – C ) .

Therefore

A = t – √(350 – C ) , B = t + √(350 – C ) .

This partial answer is inserted in the other condition:

AB = = = ,t √(350 C ) t √(350 C ) C (350 C ) 2C 350

a calculation which seems straightforward but where, according to Antonio, the untrained
will none the less err.[125] We now have

= A + B – 20 = 2t – 202C 350

and thus after squaring

124 That is, the fifth standard “case” (equation type) of abbacus aliabra (and al-Khwārizmı̄’s al-jabr),
“censi and number are equal to things”. This is the case with a double solution, which Antonio
neglects here – the alternative solution leads indeed to complex and thus impossible values for
a and b.

125 Those who doubt Antonio’s words should have a look at the mistake described in note 102.
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2C – 350 = 4C + 400 – 80t ,

which can be reduced to

2C + 750 = 80t .

Solving this equation by means of the standard rule for the fifth case Antonio finds t =
15 – silently discarding the other solution t = 25, cf. note 124.

Several other problems in the Fioretti are solved by means of two algebraic unknowns:
#20, #21, #22 (twice during the procedure), #24, #25 and #28. All make the position

a = t – q , b = t + q ,

and all could have been solved in the same way as number 9 and number 10, if only the
position had been

a = t – √? , b = t + √? ,

that is, with an implicit second unknown. Only one detail tells something of interest –
namely, this passage from #20 [ed. Arrighi 1967a: 44]:

Find two numbers so that their roots joined together make 6 and their squares be 60, that
is, the joining of the squares be 60. Posit the first number to be a thing less the root of
some quantity, that is less some quantity; the other posit to be a thing plus the said quantity.
[...].

This confirms that Antonio as copied by Benedetto presents us with a work in progress –
if the Fioretti had been polished, it would not have left a formulation “root of some
quantity” then to be corrected. More striking: the slip shows that Antonio at first had in
mind the method of problems 9 and 10; it is a plausible guess that he used an earlier
solution of the problem – probably his own, nobody else in Italy between Fibonacci and
Antonio is known to have possessed adequate mathematical capabilities together with
similar interest.

Antonio may have been aware of Fibonacci’s use of two unknowns – he knew at least
some of his works and may well have read them in sufficient depth. However, what he
develops here is quite different from what Fibonacci offers. With exception of the botched
problem from chapter 15 section 3 of the Liber abbaci, all problems where Fibonacci uses
two unknowns are linear, as the regula recta in general. Those of Antonio are not.
Moreover, Antonio understands his problems to belong within the area of aliabra – his
thing multiplied by itself becomes a censo. The method developed by Antonio in the
Fioretti is an independent creation.

It remains a possible hypothesis that the name quantità for the second unknown was
a borrowing; we do not know it from any earlier abbacus writer, but as we shall see below
(p. 105), more went on before Pacioli’s times with two unknowns than we know about;
maybe also before Antonio’s times. However, Antonio’s groping start with “some quantity”
before he comes to “quantity” speaks against the hypothesis.
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The Florentine Tratato

The Florentine Tratato sopra l’arte dell arismeticha (above, p. 28), only slightly later
than Antonio, approaches the use of several algebraic unknowns in a wholly different way.
Its author (we seem to be confronted with an original composition) is a brilliant algebraist,
as shown by his transformation of cubic equations – see [Høyrup 2019a: 331f ]. This makes
this approach all the more striking.

The treatise contains a large collection of problems illustrating the 22 standard rules
(Jacopo’s 20 rules, plus the missing two biquadratics – those problems of the fourth or
lower degree that could be solved correctly by the methods at hand). Then come, in the
very end, four problems of a different character.

Two of these problems are of type “finding a purse”, two “purchase of a horse”. All
four make use of two algebraic unknowns (partial use, as we shall see). None of them
take note of that, in spite of being provided with a metamathematical commentary (here
in spaced writing). At first we have a purchase, not of a horse but of a goose:[126]

Three have denari and they want to buy a goose, and none of them has so many denari

that he is able to buy it on his own. Now the first says to the other two, if each of you
would give me 1/3 of his denari, I shall buy the goose. The second says to the other two,
if you give me 1/4 plus 4 of your denari I shall buy the goose. The third says to the other
two, if you give me 1/4 less 5 of your denari I shall buy the goose. Then they joined together
the denari all three had together and put on top the worth of the goose, and the sum will
make 176, it is asked how much each one had for himself, and how much the goose was
worth. A c t u a l l y I b e l i e v e t o h a v e s t a t e d s i m i l a r q u e s t i o n s a b o u t m e n
i n t h e t r e a t i s e , [127] b u t w a n t i n g t o s o l v e c e r t a i n q u e s t i o n s i n a
n e w w a y I h a v e f o u n d n e w c a s e s w h i c h I d o n o t b e l i e v e t o h a v e
( a l r e a d y ) t r e a t e d . [ . . . ] . T h e r e f o r e I h a v e m a d e i t i n s u c h w a y t h a t
i n t h i s o n e a n d t h o s e t h a t f o l l o w i t w i l l h a v e t o b e s h o w n t h a t t h e
q u e s t i o n e x a m i n e d b y t h e t h i n g w i l l l e a d t o n e w q u e s t i o n s t h a t
c a n n o t b e d e c i d e d w i t h o u t f a l s e p o s i t i o n . [...]. I shall make this beginning,
let us make the position that the first man alone had a thing, whence, made the position,
you shall say thus, if the first who has a thing asks the other two so many of their denari

that he says to be able to buy the goose, these two must give to the first that which a goose

is worth less what a thing is worth, which the first has on his own. So that the first can
say to ask from the other two a goose less a thing, and you know that the first when he
asks for the help of the others asks for 1/3 of their denari. So the two without the first must
have so much that 1/3 of their denari be a goose less a thing, and in this way you see clearly
that the second and the third together have 3 geese less 3 things. Now it is to be seen what

126 I translate from [Franci & Pancanti 1988:145–150], correcting a few mistakes in agreement with
the manuscript.

127 Namely in the sense that fols 97v–110r contain a large number of “give and take”, “purchase of
a horse” and “finding a purse” problems.
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all the three have, and it is clear that the first by himself has a thing and the other two
have 3 geese less 3 things, so that all three have 3 geese less 2 things. Now we must come
to the second, who asks from the other two 1/4 plus 4 of their denari and says to buy a
goose. I say that when the second has had as help of the other two the part asked for, he
shall find to have a goose ).

Protracted arguments lead to conclusion that B is 1/3 goose plus 2/3 things less 51/3 in number
(A, B and C being the three original possessions). Since B + C has been seen to be 3 geese

less 3 things, C is 22/3 geese and 51/3 in number less 31/2 things. Using then that
C + 1/4(A + B )– 5 is a goose, it is found (I skip intermediate steps) that 13/4 geese equals
31/4 things and 1 in number, or, multiplying “in order to eliminate fractions”,

7geese = 13things + 4 .

Moreover, since A + B + C was seen to equal 3 geese less 2 things, and these together with
the goose equalled 176

4geese – 2things = 176 .

Now, for instance, the thing might be found from the latter equation (namely, to be
2 geese less 88) and be inserted in the former; that would easily lead to the goal, and that
is what Fibonacci or Abū Kāmil would have done. Instead the author goes on with an
equally protracted solution of the two equations by means of a double false position –
a method that is already opaque in itself in the sense that it is never explained why it
works,[128] but more opaque here since two equations are combined.[129]

The other three problems are similar. To my knowledge, their way is unique in the
history of mathematics. The style – taking the goose as an unknown that can be added,
subtracted and multiplied by a coefficient – is too similar to what we find earlier in the
Fibonacci problems and later in Benedetto’s two treatises to be an independent invention.
It seems that the author has borrowed an idea in rarefied circulation – so rarefied that he
only grasps half of it; and that he has completed it in his own way, drawing on a familiar
technique.

128 The method makes use of the “alligation principle”: combining two wrong guesses in such a way
that the errors cancel, in the same way as two alloys of different fineness are combined to yield
an alloy of the fineness asked for.

129 A partial translation of this solution can be found in [Høyrup 2019b: 55f ]. An analysis in modern
symbolism is offered by Franci and Marisa Pancanti [1988: xxiii–xxiv].
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The Florentine abbacus encyclopedias

The regula recta (also with several unknowns) returns in the Florentine abbacus
encyclopedias (above, p. 21), though now under the name modo recto and with unknown
(or primary unknown) quantità. The Ottoboniano Praticha appears to inform us about what
was currently done and known; Benedetto’s Praticha reveals how much more could be
made on this basis. Both show how easily innovations can be forgotten if nobody is
interested – in manuscript culture but not only. Perhaps (as in the present case) to be
rediscovered or reinvented independently once the context fits.

The Ottoboniano Praticha

On fol. 28v, the Ottoboniano Praticha explains, we remember from p. 32, that the
modo recto is used by “Leonardo [Fibonacci] and all the others who understand”. The
writer thus knows the technique from the Liber abbaci. The reference to “all the others
who understand” shows, however, that he also knows if from a general abbacus tradition,
within which, as he says, “some say it is one of the exemplary modes of algebra”. The
use of quantità as unknown and the reference to a modo shows that the writer’s main
reference is the living abbacus tradition, not Fibonacci.

Many problem solutions make use of the technique, often accompanied by symbolic
calculations in the margin where the quantità is abbreviated q. Others do not speak
explicitly about it, but there is obvious continuity in the way the marginal calculations
(and the solutions in general) proceed. One (fol. 132r–v) is of particular interest:

5 eggs and 4 oranges and 10δ are worth 8 eggs and 2 oranges and 6 δ. And 7 eggs and
6 oranges less 3 δ are worth 5 eggs, 4 oranges and 7 δ. It is asked, what is an egg worth,
and what is an orange worth? This case has been given to me a few days ago to solve.

The final clause shows that this was the level that was considered difficult, and reversely
the purpose of such problems – only difficult matters could serve as challenges.

The marginal calculations are algebraic, though using no symbols for the two prices
but positions in columns; the question is already formulated as a set of two rhetorical
equations. We may provide the columns with the headings which the writer kept in his
mind, in agreement with what is found in the text. As also elsewhere in the three
encyclopedias (above, p. 54), the long stroke serves as equation sign:
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e o δ e o δ

5 4 10 8 2 5

5

5 4 5 8 2 –

4 5 3 2

2

2 5 3

The equation 5e+4o+10δ = 8e+2o+5δ is thus reduced in steps to 2o+5δ = 3e (e and o

being indicated by column positions). In the same way, 7e+6o–3δ = 5e+4o+7δ is next
reduced to 2e+2o = 0o+10 by means of a similar scheme.

Now the modo retto is made use of, and the worth of the orange is posited to be a
quantity. Therefore 3 eggs are worth 2 quantities and 5δ; 1 egg hence 2/3 quantity and
1 2/3 δ; and 2 eggs and 2 oranges in consequence 3 1/3 quantity and 3 1/3 δ, but also 10δ.
Therefore, 3 1/3 q are worth 6 2/3 δ; the quantity hence equals 2δ, which is thus the worth
of an orange, while the egg, being worth 2/3 quantity and 1 2/3 δ, is worth 3δ.

Even in the absence of explicit symbols, the techniques of handling two linear equations
with two unknowns could thus be implemented without being seen as a striking innovation.

Benedetto

Benedetto goes far beyond this informal approach and transforms it stepwise into a
genuine technique (used with up to five unknowns). The main (and only known complete)
manuscript of his Praticha is an autograph, sometimes copying explicitly from earlier work
(as we have seen, al-Khwārizmı̄, Fibonacci, Biagio, Antonio, but also others). The part
under discussion here, however, is a work in progress, which allows us to see how the
idea develops.

The first step is taken on from fol. 270v onward:[130]

(fol. 270v)Four have denari, and walking on a road they found a purse with denari. The first
and second say to the third, if you give us the purse we shall have 2 times as much as

130 Benedetto’s grammar is less perfect than his mathematics; I shall not try to improve his style.
I omit what Benedetto has deleted. Words in 〈 〉 have been forgotten by Benedetto; they are restored
from his preceding symbolic calculations and after further control that they are presupposed in what
follows. Errors Benedetto has overlooked are conserved but pointed out in notes – they as well as
all other corrections all concern the secondary description in words, not the original symbolic
calculations. “First”, “second”, “third”, “fourth” and “purse” are italicized when they serve as
algebraic unknowns.

A transcription of those of Benedetto’s Tuscan texts that are translated here can be found in
[Høyrup 2020: 75–80].
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you. The second and third men say to the fourth, if we had the denari of the purse we
should have 3 times as much as you. The third and fourth say to the first, if we had the
denari of the purse we should have 4 times as much as you. The fourth and the first say
to the second, if you give us the denari of the purse we shall have 5 times as much as
you. It is asked how much each one had, and how many denari there were in the purse.
We shall do in this way, you shall say, the first and the second with the denari of the purse
say to have 2 times as much as the third man. Whence the third man by himself had the
1/2 of that which the first and the second and the purse have. And mark (segnia[131])
this. And then you shall say, the second and the third man with the purse have 3 times
as much as the fourth, so the fourth man had the 1/3 of that which the first and second have,
and of the purse. And mark even this. And then you shall say, the third and the fourth
man with the purse had 4 times as much as the first, and therefore the first man by himself
had the 1/4 of that which the third and the fourth man had, and of the purse. An mark this.
And then you shall say, the fourth and first have with the purse 5 times as much as the
second, so that the second will have the 1/5 of that which the first and fourth man have,
and of the purse. And this is marked. And you shall bring the denari of the third to a
comparison.[132] And you shall say, the denari of the third man is as much as the 1/2
of the denari of the first and the second and of the purse. From where it is to be known,
how much are the 1/2 of the denari of the first, which we have ¿brought together,? that the
denari of the first are the 1/4 of the denari of the third and fourth man and of the purse,
and let the 1/2 of the denari of the first be 1/8 of the denari of the third and fourth and of
the purse. Therefore you shall say that the denari of the third should be as much as the
1/2 of the denari of the second and of the purse and as much as 1/8 of the denari of the
third and fourth and of the purse. Therefore you shall take away 1/8 of the denari of the
third and join 1/8 of purse to 1/2 purse. And we shall have that 7/8 of the denari of the third

are 1/8 of the denari of the fourth and 1/2 of the denari of the second and 5/8 of purse. And
then (fol. 271r)it is to be seen how much 1/8 of the denari of the fourth are, where we say that
all the denari of the fourth man are 1/3 of the second and the third man and of the purse.
Therefore 1/8 of the denari of the third man will be 1/24 of the denari of the second and
of the third and of the purse. Therefore you shall take away from 7/8 of the denari of the
third 1/24 of the denari of the third man and above 5/8 of purse you shall put 1/24 of purse,
and above 1/2 of the second you shall put 1/24 of the denari of the second, and we shall
have that 5/6 of the denari of the third man are as much as the 2/3 of the purse and 13/24

of the denari of the second. And you shall say, if 5/6 of the denari of the third man are
as much as the 2/3 of the purse and 13/24 of the second, how much will all the denari of
the third be? Where you shall divide 2/3 of the denari of the purse and 13/24 of the denari

of the second in 5/6 , from which comes 4/5 of the denari of the purse and 13/20 of the denari

of the second. This is taken note of (notato[133]). And in the same way you shall make

131 Technically, this can be seen to mean that it is written down as a symbolic equation. Cf. note
133.

132 Technically, as we see in the following, this refers to an algebraic substitution.

133 The verb notare may mean both “write down” and “consider”. “Take note” should be similarly
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the denari of the fourth. It is true that it could be done without that, but since it is in the
castelet[134] this order shall be pursued. You shall say, the fourth has the 1/3 of the denari

of the second and the third and of the purse. Where you shall get the 1/3 of the denari of
the second without the others, and you shall say, the second has as much as the 1/5 of the
first and of the fourth and of the purse. Wherefore the 1/3 of the denari of the second will
be 1/15 of the denari of the first and of the fourth and of the purse. Where from the denari

of the first you shall take away 1/15 and you shall join to 1/3 of purse 1/15 of purse, and we
shall have that 14/15 of the fourth are as much as 1/15 of the first and 1/3 of the third and
2/5 of purse. Then 1/15 of the first will be 1/60 of the third and 1/60 of the fourth and of the
purse, where from 14/15 of the denari of the fourth take away 1/60 , and above 1/3 of the denari

of the third man join 1/60 of the denari of the third man, and above the 2/5 of the denari

of the purse put 1/60 of purse, and you shall have that 11/12 of the denari of the fourth are
7/20 of the denari of the third and 5/12 of the denari of the purse. And you shall say, if
11/12 of the fourth are 7/20 of the denari of the third man and 〈 5/12 〉 of the purse, what will
all the denari of the fourth be? Where you divide by 11/12 , from which comes 21/55 of the
third and 5/11 of the purse, and as much has the fourth man. And this is done. And we shall
make position that the second has a thing, that is, a quantity.[135] And because we have
found that the first man has the 4/5 of the denari of the purse and the 13/20 of the denari

of the second, the third man will thus have 13/20 of quantity and 4/5 of purse. And the fourth
man, whom we have found that he has the 21/55 of the third and 5/11 of the purse. First you
shall take the 21/55 of that which the third has, of, that is, 13/20 of quantity and 4/5 of purse,
which are 273/1100 of quantity and 84/275 of purse, and to the 84/275 of purse you join 5/11 of
purse, they make 19/25 of purse. And you shall say that the fourth man has the 273/1100 of
quantity and 19/25 of purse. Now so as to know that which the first has you shall keep this
way. The fourth and first with the purse have 5 times as much as the second. Therefore,
if the second has 1 quantity, they will have with the purse 5 quantities. And we say that
the fourth man has 273/1100 of quantity and 19/25 of purse. When to these has been joined
a purse they make 273/1100 〈of quantity〉 and 1 purse 19/25 . And so much has the fourth with
the denari of the purse and with the denari of the first. They should be 5 quantities, thus
the first had, from the 273/1100 of quantity and 1 purse 19/25 until 5 quantities, where there
are 4 quantities 827/1100 less a purse 19/25 . And so much has the first. And in this way we
have established that the first has 4 quantities 823/1100 〈less 1 purse 19/25 〉. The second has
a quantity and the third has 13/20 of quantity and 4/5 of purse. And the fourth has 273/1100

ambiguous. Notare as well as the functionally similar segnare are used about the writing of simplified
equations.

134 Castelluccio, “small castle”. The word obviously refers to the marginal calculations on the previous
page, well enclosed by lines as if composed of several courtyards or chambers. Here, as we see,
Benedetto states explicitly that the marginal calculation is already there when the main text is written.

135 In some of Benedetto’s preceding problem solutions with two algebraic unknowns, these are the
chosa, “thing”, and quantità, “quantity”, cf. above. In others, his unknowns are quantità and borsa.
As we see, Benedetto starts from the first routine and then chooses the other, allowing him to
conserve the borsa.
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quantities and 19/25 of quantity.[136] Now it is to be seen if the first and second with the
purse have two times as much as the third. And you shall say, the first has 4 quantities
827/1100 less 1 purse 19/25 . And the second has 1 quantity. These two amounts, having been
joined with the denari of the purse, make 5 quantities 827/1100 less 19/25 of purse. And this
is two times as much as the denari of the second,[137] that is, 2 times as much as 13/20

quantity and 4/5 of purse, which are 26/20 of quantity and 8/5 of purse. So 5 quantities
827/1100 less 19/25 of purse are equal to 26/20 of quantity 8/5 of purse, where you shall confront
(raguaglerai[138]) the sides detracting on both sides 26/20 of quantity and giving to each
side 19/25 of purse. You shall have that 3 quantities 1597/1100 are equal to 59/25 of purse. And
in order not to have fractions, multiply each side by 1100. You shall have that 2897
quantities are equal to 2596 purses. Therefore, when the purse is worth 4897, the quantity

is worth 2596. And for the first, who has 4 quantities 823/1100 less a purse 19/25 , he will have
3717. And the second, whom we posited to have a quantity, will have 2596. And the third,
whom we found to have 13/20 quantity 4/5 purse, will have 5605. And the fourth, whom we
found to have 273/1100 of quantity 4/5 of purse, had 4366. And thus it has been made, The
first has 3717. And the second has 2596. And the third has 5605. And the fourth 4366.
And the purse had 4897. Which further, (fol. 271v)reduced to smaller numbers by 59: The
first has 63, the second 44, the third 95, the fourth man 74. And the purse 83.

Close attention to the organization of fol. 270v (redrawn in Figure 7) shows that the
statement “Four have denari [...] how many denari there were in the purse” was written
first. After that Benedetto started calculating in a “margin” which in certain points invades
the text column by more than 80%. When that was done, he wrote a description of the
calculations in whatever remained for that purpose.

The marginal calculation uses standard abbreviations for “first”, “second”, “third” and
“fourth”, which for typographical convenience we may render α, β, γ and δ. Borsa, purse,
is abbreviated b.

The calculation starts in the upper left corner. After that, however, it is no longer linear.
The written text assists in clarifying the order in which the different parts are to be read;
Benedetto himself of course knew the order he was following.

At first (upper left corner of the “castelet”) we find these four equations,[139]

(1) γ = 1/2 α+ 1/2 β+ 1/2 b ,
(2) δ = 1/3 β+ 1/3 γ+ 1/3 b ,
(3) α = 1/4 γ+ 1/4 δ+ 1/4 b ,
(4) β = 1/5 α+ 1/5 δ+ 1/5 b ,

136 Error for “ 19/25 of purse”. The marginal calculation, correctly, gives “δ 272/1100 q 19/25 b”.

137 Error for “the third”, as confirmed by the following words.

138 As we see, the process of “confronting”/ragugliamento refers to the process of constructing the
reduced equation – in the present case by addition as well as subtraction.

139 Equality is indicated by large distance, addition by close juxtaposition. Elsewhere but not here
Benedetto uses the long stroke.
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Figure 7. Fol. 270v, redrawn. Thick lines represent the problem statement, thin lines the procedure

description (the first two lines belong to the procedure of the previous problem).
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derived from the initial conditions of the problem via multiplication.
As a first step, in the same chamber, 1/2 α is found from (3) and substituted in (1),

yielding
(5) γ = 1/8 γ+ 1/8 δ+ 1/8 b+ 1/2 β+ 1/2 b .

This is reduced to
(6) 7/8 γ = 1/8 δ+ 1/2 β+ 5/8 b .

Next (2) is used to find 1/8 δ, which is substituted into (6), leading to
(7) 7/8 γ = 1/24β+ 1/24γ+ 1/24 b+ 1/2 β+ 5/8 b .

This is reduced to
(8) 5/6 γ = 13/24 β+ 2/3 b ,

which through division by 5/6 is transformed into
(9) γ = 13/20 β+ 4/5 b .

In the next chamber downwards, 1/3 β is found from (4) and inserted into (2), which leads
to

(10) δ = 1/15 α+ 1/15 δ+ 1/15 b+ 1/3 γ+ 1/3 b .
This is reduced to

(11) 14/15 δ = 1/15 α+ 1/3 γ+ 2/5 b .
Now (3) is used to derive 1/15 α, which is substituted into (11). That gives

(12) 14/15 δ = 1/60 γ+ 1/60 δ+ 1/60 b+ 1/3 γ+ 2/5 b ,
which reduces to

(13) 11/12δ = 7/20 γ+ 5/12 b .
Division by 11/12 reduces this to

(14) δ = 21/55 γ+ 5/11 b .
Similarly to what was done in the egg-orange problem in the Ottoboniano Praticha, the
large chamber to the right now shifts to standard modo recto, the quantità or q being
identified with β, and borsa or b remaining in service. From (9) we get that

(15) γ = 13/20 β+ 4/5 b ,
and from (14) that

δ = 21/55 ( 13/20 q+ 4/5 b)+ 5/11 b ,
whence

(16) δ = 273/1100q+ 19/25 b .
Further, from the original condition behind (4) we know that

δ+α+b = 5 β ,
whence

(17) δ+α+b = 5q .
Therefore

α = 5q–( 273/1100 q+1 19/25b) ,
or

(18) α = 4 827/100 q–1 19/25b .
Inserting values for α and β in the original condition that gave rise to (1),

(19) 2γ = α+β+b ,
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we get
(20) 2γ = 5 827/1100 q– 19/25 b ,

that is,
(21) 5 827/1100q– 19/25 b = 26/20 β+ 8/5 b

Addition and subtraction lead to
(22) 3 1597/1100 q = 59/25b .

Multiplying by 1100 “so as to avoid fractions” Benedetto gets
(23) 4897q = 2596b .

So (lower left chamber), if b is chosen to be 4897 (as Benedetto knows, the problem is
indeterminate and allows this choice), q will be 2596. From (18) then follows that α =
3717; β is already known to be 2596; γ can be found for instance from (15) to be 5605,
and δ (16) to be 4366; b is already known to be 4897.

Since the problem is indeterminate and Benedetto’s value for b was a choice, all values
can be changed proportionally. Therefore (lower right chamber) Benedetto reduces them
by the common factor 59, which gives him α = 63, β = 44, γ = 95, δ = 74, b = 83.

Comparison of the marginal calculation with the text that explains the procedure shows
that the latter contains a number of typical copying errors, confirming that the marginal
calculation was made first. The marginal calculation thus presents us with a clear instance
of incipient symbolic algebra involving five unknowns, antedating other known examples
by a small century.

Benedetto does not present what he has done as epoch-making, even though the purpose
for which he is writing would invite that – in a gift intended for a protector (above, note
51), it would be obvious to show the merit of what is offered indirectly by pointing out
with due modesty that something never made before is offered.

As we shall see, Benedetto was aware to have produced an innovation. A comparison
with Fibonacci’s Liber abbaci may tell us why he may have considered this innovation
marginal. In chapter 12 part 4 of Fibonacci’s work [ed. Giusti 2020: 372] we find this
problem:

On four men and a purse.

The first and the second with the purse have the double of the denarii of the third; and
the second and the third the triple of the fourth, and then the third and the fourth the
quadruple of the first, while the fourth and the first with the purse similarly have the
quintuple of the second.

This is obviously the same problem, and the rest of Benedetto’s Praticha leaves no doubt
that Benedetto knew the Liber abbaci. Fibonacci goes on:

The solution to this problem you will find by finding the ratio of the denarii of the purse
to the denarii of the first in this way. Because the first and second with the purse have
the double of the third, half of the denarii of the first and second and the purse is as much
as the denarii of the third man. Similarly from the other propositions you will have that
1/3 of the second and third man and of the purse is as much as the denarii of the fourth
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man, and 1/4 of the third and fourth man and of the purse is the quantity of the denarii

of the first, and 1/5 of the denarii of the fourth and first man and of the purse is the quantity
of the denarii of the second. And because 1/2 of the first and second and of the purse is
the quantity of the third, the third part of the first and second and purse, that is 1/6 of them,
is 1/3 of the third man. Commonly (comuniter) are joined 1/3 of the denarii of the second
and purse: then will 1/6 of the first and 1/2 of the second and of the purse be as much as
1/3 of the second and third and of the purse. But 1/3 of the second and third and of the purse
is the quantity of the denarii of the fourth man; hence 1/6 of the first and 1/2 of the second
and of the purse are the quantity of the denarii of the fourth man. Therefore 1/4 of 1/6 of
the denarii of the first, that is, 1/24 , and 1/4 of 1/2 , thus 1/8 of the denarii of the second and
of the purse, are 1/4 of the denarii of the fourth man. Commonly are added 1/4 of the third
and of the purse: then 1/24 of the first with 1/8 of the second and with 1/4 of the third and
3/8 of the purse will be as much as 1/4 of the denarii of the third and fourth and of the purse.
But 1/4 of the third man and the fourth and of the purse is the quantity of the first. Therefore
1/24 of the first and 1/8 of the second and 1/4 of the third and 3/8 of the purse are as much
as the denarii of the first. Then their fifth part, that is 1/120 of the first and 1/40 of the second
and 1/20 of the third and 3/40 purse, are 1/5 of the denarii of the first. Commonly are added
1/5 of the fourth man and the purse: then 1/120 of the first and 1/40 of the second and 1/20 of
the third and 1/5 of the fourth and 11/40 of the purse will be as much as 1/5 of the fourth man
and the first and of the purse. [...]

The omission [...] is as long as the part that was translated. It leads to

Hence 79/600 and 1/150 of the first, that is 83/600 of the same, with 1/25 of the purse, are
29/200 of the purse. Commonly are taken away 1/25 of the purse. Remain 83/600 of the first,
as much as 21/200 of the purse. Then two numbers should be found so that 83/600 of the first
are 21/200 of the second, they will be 63 and 83. Then if the first man has 63, the purse is
83. [...].

If we admit the identity of “the denari of the first/first man”, “the quantity of the denari

of the first man”, “the quantity of the first man” and “the first man”, this is rhetorical
algebra with five unknowns. If we insist on fully consistent and not only unmistakeable
naming it may not be, but the difference is scant, and would hardly have been thought
of at the time.[140]

There are traces in Fibonacci’s text showing that even he described a procedure
performed by other means: ”150” instead of “ 1/150 primi” and “denariis secondi” instead
of “denariis primi”. Both are shared by all manuscripts, showing that they were in
Fibonacci’s master copy – see [Høyrup 2021b: 5]. This may have been a line diagram
similar to the one used in the first solution to the give-and-take problem whose alternative
solution served to introduced the regula recta – in all cases where these diagrams are shown

140 The same objection could be raised to Benedetto’s verbal description of the procedure. Since
this description is secondary it changes nothing in the characterization of the marginal calculation

as a perfect symbolic algebraic calculation with five unknowns.
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in his text they are lettered a-b-g-d, meaning that they belong with a faithfully borrowed
text (see [Høyrup 2021b: 8–11]). We may suppose that he used the same technique when
working independently, but in those cases he hid it.

Fibonacci solves many intricate horse-, give-and-take- and purse-finding problems
with similar forbiddingly difficult rhetorical arguments. We may guess that all of these
were solved by similar means, which it would be difficult not to characterize as algebraic
(there should be no essential difference between representing unknown numbers by line
segments and by letters). If this is true, Fibonacci was deeply engaged in linear algebra
with many unknowns, but only in secret.

Benedetto in any case did not know; but he will have been aware that the difference
between what he had done himself and what could be found in the Liber abbaci was scant.
He will therefore have had sound reasons to see his innovation as minor.

Benedetto’s awareness of having none the less innovated is shown by his treatment
of two horse-buying problems found later in the Praticha.

On fol. 277r we find this:[141]

(fol. 277r)Four men have denari and want to buy a horse, and no one has so many denari that
he can buy it. The first says to the second and the third, if you give me 1/2 of your denari,
with mine I shall buy the horse. The second says to the third and fourth man, if you give
me the 1/3 of your denari, with mine I shall buy the horse. The third man says to the fourth
and the first, if you give me the 1/4 of your denari, I shall buy the horse. Further, the fourth
man asks the first and the second for the 1/5 of their denari and says to buy the horse. It
is asked, how many denari each one had, and what the horse was worth.

Even though there are many ways to solve such cases I shall take the most convenient,
or let us say the least tedious.|| That is that you shall say, we propose that the first with
the half of the denari of the second and of the third man has a horse. And we say that
the second with the third of the denari of the third and fourth man buy the horse. So the
first with the 1/2 of the denari of the second and third man has as much as the second has
with 1/3 of the third and fourth man. From there you will see confronting (raguagliando),
that is, detracting first on each side (parte) 1/2 of the denari of the second, and we shall
have that the denari of the first with 1/2 of the denari of the third man are as much as
1/2 of the denari of the second with 1/3 of the third and fourth man. And then you remove
from each side 1/3 of the denari of the third man, and we shall have that the first man with
1/6 of the denari of the third man is as much as 1/2 of the denari of the second. And take
note of this (nota). [...]

Until the point marked ||, the text was written first. Then Benedetto starts calculating in
the margin, at first in these steps (using the same standard abbreviations as before for
“first”, “second”, “third” and “fourth”):[142]

141 A closely related problem is found in the Liber abbaci [ed. Giusti 2020: 393]. There too,
Fibonacci’s procedure is at least quasi-algebraic, but once again Benedetto calculates on his own.

142 Addition is still indicated by juxtaposition, but now equality first by “igualiby —————— alone”,
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α+ 1/2 β+ 1/2 γ = β+ 1/3 γ+ 1/3 δ
α+ 1/2 γ = 1/2 β+ 1/3 γ+ 1/3 δ

α+ 1/6 γ = 1/2 β + 1/3 δ
——————————
β+ 1/3 γ + 1/3 δ = γ+ 1/4 δ + 1/4 α

β+ 1/3 δ = 2/3 γ+ 1/4 δ+ 1/4 α
β+ 1/12 = 2/3 γ + 1/4 α

The structure of the marginal calculation is similar to that of the previous example – divided
into sections, the first of these (redrawn here) written close to the margin and not occupying
much of the text column, those written later then spreading further into it. There is no
need to say more about this.

The calculation was thus made first even this time, and the describing text written
afterwards. In the next passage we see Benedetto sharpening of his conceptual apparatus,
speaking explicitly about the (reduced) equations and giving a name to the isolation of
one unknown:

And then you shall say, we have said that the second man with 1/3 of the denari of the

Figure 8. The first part of the calculations

on fol. 277r, redrawn.

third and fourth man has as much as the third man with 1/4 of the denari of the fourth and
first man. Where the denari of the
second man with 1/3 of the denari of
the third and fourth man are as many
as are the denari of the third man
with 1/4 of the denari of the fourth and
first (fol. 277v)man. Where confronting
the sides you take away 1/3 of the
denari of the third man, and you shall
have the denari of the second with the
1/3 of the denari of the fourth to be the
2/3 of the denari of the third man with
1/4 of the denari of the fourth and first
man. And then on each side you take
away 1/4 of the fourth man. And you
shall have that the denari of the
second man with 1/12 of the fourth
man are as much as 2/3 of the third
man with 1/4 of the denari of the first
man. Which you still take note of.
And in this way you may

then by —————— alone.
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confront[143] the other positions. But with these 2 you can solve. And if you want the
other equations,[144] you may do as you see on the previous page, there the equation
of the third is.[145] Now to our subject-matter (materia). We have made that the denari

of the first with 1/6 of the denari of the third man are 1/2 of the denari of the second and
1/3 of the denari of the fourth man. And we also have that the second with 1/12 of the fourth
man are as much as the 2/3 of the denari of the third man and 1/4 of the denari of the first.
Therefore 1/4 of the denari of the first is to be brought apart from the denari of the others.
You shall keep this way, we have that the denari of the first and 1/6 of the denari of the
third man are as much as the 1/2 of the denari of the second and 1/3 of the denari of the
fourth man, where from both sides you take away 1/6 of the denari of the third man. And
you shall have the denari of the first to be 1/2 of the denari of the second and 1/3 of the
denari of the fourth less 1/6 of the denari of the third man. Therefore 1/4 of the denari of
the first man are 1/8 of the denari of the second and 1/12 of the denari of the denari of the
fourth and less 1/24 of the denari of the third man. And that you shall join to 2/3 of the denari

of the third man, and you shall have 5/8 of the denari of the third man and 1/8 of the second
and 1/12 of the fourth man. Therefore you shall say that the denari of the second with
1/12 of the denari of the fourth are as much as 5/8 of the denari of the third man and
1/12 of the denari of the fourth man and 1/8 of the denari of the second. Therefore, from
each side you shall take away 1/8 of the second man and 1/12 of the fourth man. You shall
have that 5/8 of the denari of the second are as much as 5/8 of the denari of the third man.
Now this is known, you shall say, if the second man should have 5, then the third would
have 7. And having had this insight (lume), and we shall make position that the second
man had 5 quantities, it follows that the third man would have 7 quantities. [...].

From here onward, in the margin and as described in the text, Benedetto makes
(symbolic respectively rhetorical) algebra with two unknowns only, and we do not need
to follow him.

After a simpler problems solved rhetorically by means of the unknowns quantità and
chavallo then comes (fol. 278v) another problem taken over from Fibonacci [ed. Giusti
2020: 397]. Here Benedetto brings his new method into play. He might have expressed
Fibonacci’s quasi-algebraic procedure by means of his new technique, and does so at first –
not necessarily copying, these are the obvious first steps. Then, however, the two solutions

143 Or “make (reduced) equations of” – I have been unable to find an English translation reflecting
both senses.

144 Aguagliazioni – that is, the (reduced) equations resulting from the process of ragugliamento,
“confrontation”.

145 Namely in the three lines of the marginal calculation that follow immediately after the two times
three lines rendered above – that is, the last three lines of the manuscript excerpt in Figure 8. We
may presume that Benedetto after having made all three sets found out in the ensuing calculations
that he did not need the last of them. We may remember his words “It is true that it could be done
without that, but since it is in the castelet, this order shall be pursued” in his solution to the problem
discussed previously.
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diverge.

Four have denari for which they want to buy a

Figure 9. Benedetto’s marginal calcu-

lation on fol. 278v, redrawn.

fol. 278v

horse, and none of them has so many denari that
he can buy it. The first and the second say to the
third man, if you give us the 1/3 of your denari,
we shall buy the horse. The second and third man
say to the fourth man, if you give us the 1/4 of
your denari we shall buy the horse. The third and
fourth man say to the first, if you give us the
1/5 of your denari, with ours we shall buy the
horse. The third and first man say to the second,
if you give us the 1/6 of your denari we shall buy
the horse. It is asked, how much each one had,
and what the horse was worth. We shall do it by
equation.[146] Where you shall say, the first and
second with 1/3 of the third buy the horse. And
the second and third man with 1/4 of the fourth
man buy the horse. Thus the denari of the first
and second with 1/3 of the denari of the third man
are as much as are the denari of the second and
third man with 1/4 of the denari of the fourth.
Where confronting the sides, taking away from
each side the denari of the second and 1/3 of the
denari of the third, we shall have that the denari

of the first are as much as 2/3 of the denari of the
third man and 1/4 of the denari of the fourth man.
And mark this. Then you shall say, the second
and third man with 1/4 of the denari of the fourth
man buy the horse. And the third and fourth man
with 1/5 of the denari of the first buy a horse. So
the denari of the second and third man with
1/4 of the denari of the fourth man are as much
as the denari of the third and fourth man with
1/5 of the denari of the first. Therefore take away
from each side the denari of the third and 1/4 of
the denari of the fourth man, and we shall have
that the denari of the second are 3/4 of the denari

of the fourth and 1/5 of the denari of the first.
And then, going on, you shall say that the third
and fourth man with 1/5 of the denari of the first
buy the horse. And the fourth and first with 1/6

146 per aguagliatione.
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of the denari of the second buy the horse. It therefore follows that the denari of the third
and fourth man with 1/5 of the denari of the first are as much as the first and fourth with
1/6 of the denari of the second. Where, confronting the sides, taking away on each side
the denari of the fourth man and 1/5 of the first, we shall have that the third man has the
4/5 of the first and 1/6 of the second. And mark this. And thus you shall do for the fourth
man, saying, the first and fourth with the 1/6 of the denari of the second buys the horse.
The first and second with the 1/3 of the denari of the third buy the horse. Therefore the
fourth and first with the 1/6 of the denari of the second have as much as the first and second
with 1/3 of the denari of the third man. Therefore confronting the sides, taking away on
each side the denari of the first and 1/6 of the denari of the second, we shall have that the
denari of the fourth are 5/6 of the denari of the second and 1/3 of the denari of the third.
And of that has been taken note. And you shall begin at the first equation,[147] saying,
the denari of the first are the 2/3 of the denari of the third man and 1/4 of the fourth man.
Therefore it has to be known what 1/4 of the denari of the fourth are. From the others,
however, we have found that the denari of the fourth man are the 5/6 of the second and
1/3 of the third man, where the 1/4 of the denari of the fourth man are as much as the
5/24 of the denari of the second and 1/12 of the denari of the third. Where to the 2/3 of the
denari of the third man you join 1/12 of the denari of the third and 5/24 of the second, they
make 3/4 of the third and 5/24 of the denari of the second. And then bring the 3/4 of the third
apart from the others, saying, the third man has the 4/5 of the first and 1/6 of the second,
where the 3/4 of the third man are the 3/5 of the first and 3/24 of the second. And you shall
join to 5/24 of the second 3/5 of the first and 3/24 of the second, they make 3/5 of the first and
1/3 of the second, and we shall have made that the denari of the first are as much as 3/5
of the first and 1/3 of the second. Therefore you shall detract on both sides the denari of
the first, you shall have that 2/5 of the denari of the first are 1/3 of the denari of the second.
That is, that the 2/5 of the denari of the first are as much as the 1/3 of the denari of the
second. Thus, if the first should have 5, the second would have 6. Let us now try the others.
You shall say that the third has as much as the 4/5 of the first and the 1/6 of the second.
Therefore, the 4/5 of the first and 1/6 of the second are 5. And so much would he have. And
the fourth has 5/6 of the second and 1/3 of the third, where the 5/6 of the second are 5 and
1/3 , and the 1/3 of the third man are 1 2/3 , (fol. 279r)which all make 6 2/3 . And thus it is done,
the first has 5 and the second 6 and the third 5 and the fourth 6 2/3 . Which, so as not to
have fractions, multiply all by 3. And you shall have the first 15, the second 18, and the
third man 15, and the fourth man 20. And so as to know what the horse is worth, you shall
join 15 of the first and 18 of the second, they make 33. To these joined the 1/3 of the denari

of the third man, that is, of 15, they make 38. And as much is worth the horse. And thus
the first had 15, the second 18, and the third had 15, and the fourth man had 20. And the
horse was worth 38.

Now the technique is mature. This time Benedetto resists the temptation to shift to
the traditional two unknowns, he uses the four unknowns (the price of the horse does not

147
aguagliatione – the first reduced equation.
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enter in the algebraic manipulations) until the very end. Moreover, the marginal calculation
is extremely neat – see Figure 9. It fills only a narrow column in the margin and does
not go into the text column (corrected errors in the describing text show that the marginal
calculations were still made first).

A related problem follows on fol. 279r. Even this, Benedetto says, will be made “by
equation”, and he shows the construction of the first reduced equation. For the others he
refers to “the teaching made below”, namely in a space of 11.5 × 9 centimetres.
Unfortunately it has not been filled by calculations, but it is none the less clear that
Benedetto thought that his symbolic calculations would be preferable to a verbal description.

It is possible that a few problems presented without detailed calculations were meant
to be dealt with by the new method. That, however, was the end of it. There is no use
for it in the rest of the Praticha. The incomplete copies of the Praticha that have survived
do not contain it, and even Ghaligai who knows Benedetto’s treatise has not noticed (even
his manuscript may have been incomplete). All in all, a glorious failure.

Pacioli, Chuquet and de la Roche

So it seems at least, judging from known surviving sources. As Pacioli reveals,
however, known surviving sources do not give a complete picture. It is not totally to be
excluded that somebody at the time was inspired by Benedetto’s invention. In the long
run, however, it left no traces. For a while, nobody would work with more than two
unknowns, nor make complete symbolic calculations.

Two “horse”-problems in Pacioli’s Perugia manuscript [ed. Calzoni & Gavazzoni 1996:
311–312] make use of the algebraic unknowns thing and horse. They explain that horse

is nothing but the price of the horse, and posit in both problems that the first man has
a thing and the other two together 2 horses less 2 things (given that in both problems the
first, having received half of what they have together, will have 1 horse).

This seems similar to what Fibonacci and Benedetto had done in similar problems.
The rest of the calculation, however, does not coincide with what we have seen so far:
in order to discover the ratio between the possessions of the second and the third, twice
a new thing is introduced (with no distinction of name).

That trick is used again and better explained in the Summa, to which we shall turn.
Here, the use of a second unknown called quantità (abbreviated qa) is dealt with twice
as a minor topic.

On fol. 148v, the cosa as well as the quantità are spoken of as doi quantità sorde,
“two deaf quantities”. They are put into play in a numerical variant of Antonio’s #9 (above,
p. 80) – here

AB = 8 , A2 + B 2 = 20 .

Since #9 is the problem where Antonio first approaches the use of two unknowns with
hesitation while Pacioli makes use of the fully developed method, the borrowing is almost
certainly indirect; though we possess no intermediate sources, they must have existed.
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Returning to the topic in earnest on fol. 191v, Pacioli says he explains it “only to show
how one operates with a deaf quantity which the ancients called second things so as to
distinguish them from the first position”. He then actually operates with three unknowns,
eliminating however the second before introducing the third; this allows him to recycle
the name quantità (I use Pacioli’s notation, where co stands for the thing ):

Three have denari. The first says to the other 2, if you give me half of yours I shall have
90. The second says to the other 2, if you give me 1/3 of yours, I shall have 84. The third
says to the other 2, if you give me 1/4 of yours plus 6, I shall have 87. I give you this solely
to show how one operates by means of a deaf quantity which the ancients call second thing

to differentiate it from the first positions. Posit that the first has 1 co, remove it from 90,
90 less 1 co remains, and this should be 1/2 of the other 2, these then have 180 less 2 things,
and all 3 have 180 less 1 co. Now do for the 2nd and posit that he has a quantity, which

I depict thus, one , and to the 2 remain 180 less a co less a . Take 1/3 , from which

results 60 less 1/3 co less 1/3 .

If A, B and C stand for the three possessions, the conditions are thus

A+ 1/2 (B+C ) = 90 , B+ 1/3 (A+C ) = 84 , C+ 1/4 (A+B )+6 = 87 .

With A posited to be a co, B to be a , Pacioli has thereby found that
1/3 (A+C ) = 60– 1/3 co – 1/3 .

Inserting this in B+ 1/3 (A+C ) = 84 and using that B = 1 , Pacioli derives the equation

1 = 36+1/2co ,

which is the second possession.
Now comes something new:

Now for the 3d do similarly: Posit that he has a quantity, remove it from 180 less 1 co,
that is, still from the amount of all three. [...].

Pacioli thus operates with three algebraic unknowns, but only with two at a time, which
allows him to recycle the name quantity. This second position allows Pacioli to derive
the equation

1 = 48+ 1/3 co ,

which is the third possession. That brings him back to a single unknown,

A+B+C = 1co+36+1/2co+48+ 1/3 co .

But we know that A+B+C = 180–1co. This solves the problem. In the end Pacioli specifies
that one shall always with this method isolate the quantity, and explains that

by means of these deaf quantities which the ancients called second things a great many
strong problems can be solved by the one who handles the equations well.

Nobody knows the identity of Pacioli’s “ancients”, but Pacioli’s reference to them
shows that two unknowns had been practised in abbacus algebra more broadly than we
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might believe on the basis of surviving sources – none of those which we have looked
at and which employ a second or further unknowns ever give a name to the category.

That they must have existed is confirmed by Chuquet – see [Heeffer 2012: 134f ].
He uses the same method of a recycled second unknown repeatedly in the appendix to
his Triparty (written in Lyons in 1484, as we remember from p. 35). Since the Triparty

was a manuscript and apparently did not circulate (apart from de la Roche’s use of kind
of fair copy in [1520]), Chuquet was certainly not Pacioli’s source. On the other hand,
the shared principle supports Pacioli’s claim that he presents existing ideas. This is one
of the things de la Roche takes over from Chuquet, under the heading règle de la quantité

[1520: 61r ].
De la Roche says that this rule

is inserted in the first canon of the rule of the thing as accomplishment and perfection of
the same because it often happens in several problems from this canon that one must posit
two or more times, of which the first position is 1 ρ. If it happens afterwards that one must
posit another time or two or three, etc., it is needed that the second, third or fourth positions
are different from the number ρ.

Giving the same name to all would indeed lead to confusion.
The first example offered by de la Roche is strange:

Divide 1 1/2 ρ plus 15 in two parts such that if one removes 13 from the second in order
to add it to the first, this first part will be the quadruple of the second plus 2.

It must be a borrowing from a complete problem dealing with a thing and a quantity

(perhaps an imagined complete problem), but only of that part of the calculation where
the second unknown is eliminated.

The following problems are more regular. They are mostly complicated version of
horse-buying-, give-and-take- or similar problems in abstracted form; on fol. 122r, there
is a problem about the purchase of saffron, cinnamon and cloves, and on fol. 217r there
is a genuine horse-problem. Many use more than two unknowns but recycle the quantité.
Taken together, they present only a small fraction of de la Roche’s algebra, in spite of
his praise of the importance of the règle de la quantité.

Heeffer supposes that all those who in subsequent years spoke of the règle de la

quantité or regula quantitatis or who applied it were inspired by de la Roche. This is no
certain conclusion. As pointed out by Heeffer [2012: 134], a marginal note in Chuquet’s
manuscript, apparently written by de la Roche (and in that case while he was preparing
his own book) states that “ceste règle est appelée la Regle de la quantité”, “this rule is
called the Rule of the quantity”. “... est appelée”, not “I shall call” or “shall be called”.
De la Roche has thus recognized a method which he already knows under that name; there
is no reason that everybody else who used the phrase should know it from de la Roche
(e.g., Rudolff – but see imminently) – nor a fortiori that he should be the source for all
those who worked with quantitas as a second unknown (e.g., Cardano, [1539] as well as
[1545]).
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Coß

The first to take up two unknowns within the coß tradition seems to be Rudolff. In
spite of de la Roche’s laudatory words, Rudolff is also likely to have been the first who
really saw the operation with several unknowns not a peripheral possibility but as essential
to algebra – in our perspective, first to understand it to be essential to our algebra.

Indeed, when introducing for the first time the Regel quantitatis on fol. I vir he asserts
it to be “a completion of the coss, indeed in truth a completion without which it would
not be worth much more than a trifle [ein pfifferling ]”. A second introduction comes on
fol. P viv, before the next use of the rule; here he refers to the need to avoid “confusion” –
close enough to de la Roche to make inspiration plausible.

The example that follows there changes plausibility into quasi-certainty. It asks for
the splitting of 1 +14φ into two parts fulfilling a certain condition – that is, another
subordinate part of a complete calculation (and, if inspired by de la Roche, definitely an
imagined complete calculation since Rudolff cannot have known the full context).

There are many more problem solutions employing several unknowns than in de la
Roche’s book, a large part of which make use of a recycled quantitet. Of particular interest
is one found on fol. P viiv. It deals, not as always done in the tradition until now, with

“two numbers” but with “two numbers a and b”. a is then posited to be 1 , and b

1quantitet. Whereas the Ottononiano Praticha and Benedetto were fully able to perform
algebraic operations on newly introduced symbols, that falls outside what Rudolff can

accept within the coß. Coß, his algebra, operated with and, when needed, with quantitet,
and not with arbitrary symbols.

Stifel

That was to change, though still within limits, with Stifel’s Arithmetica integra from
[1544]. Stifel certainly knows Rudolff – anybody working on coß after 1525 did, and in
[1553] Stifel was to republish an expanded edition of Stifel’s Coss.

Stifel was the first algebra writer after Benedetto to create a system for naming more
than two unknowns – and the first to create a system, namely from fol. 252v onward in
the Arithmetica integra. Stifel still thinks of , the res, as the primary unknown (his
headline for the topic is De secundis radicibus, “on second roots”). For these second roots
he uses the sequence of letters of the alphabet, “1A (that is, 1A ), 1B (that is, 1B ),
1C (that is, 1C ), 1D etc.”; for their second powers he uses 1A etc. For the product
of and A he suggests A, while that of A and B will be written AB.[148] Stifel also

148 The explanation of 1A as standing for 1A shows that A, B, etc. are thought of as markings.
So, all the first powers are , but they are distinguished as A (“the A-kind of ”), B , etc.
When standing to the left, on the other hand, is meant as a factor. This system seems somewhat
heavy and prone to produce mistakes; as we shall see, Stifel would soon give it up.
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shows divisions of such products of powers of the unknowns (to use modern terms), yet
only such that do not lead to negative powers.

A first example (fol. 252v) is borrowed from Rudolff and makes use of only two
unknowns. It is uninteresting on both accounts, involving nothing but a substitution of
A for q (for this problem, admittedly, Rudolff employs only one unknown).

The next example (fol. 253v) teaches us much more. It is mathematically simple,
belonging to a type which we may speak of as “all except each”:

Seven men owe me money in this way. The first and second, third, fourth, fifth and sixth
owe 142 florins. (Here observe, that only the debt of the seventh debtor is excluded from
this amount of florins.) I posit therefore that the amount of the seventh is 1 , and thus
that the amount of all the debts will be 142+ . The second, third, fourth, fifth, sixth and
seventh owe 126 florins. (Here the debt of the first is excluded.) I posit therefore for the
amount of the first 1A florins. And thus again the amount of all results, making 126+1A.
[...].

The problem formulation continues cyclically. The following numbers are therefore equal

( , A, B, C, D, E and F being Stifel’s names for the respective debts):

142+1
126+1A

136+1B

128+1C

130+1D

120+1E

148+1F

In Fibonacci’s Liber abbaci as well as a in number of abbacus treatises, such problems
are solved without recourse to algebra. In the present case their authors would have
observed that the sum 142+126+136+...+148 = 930 contains the sum of the debts seven
times, less the same sum once. Dividing the sum by 6 therefore shows that the sum of
the debts is 155.

But Stifel’s primary interest is not to solve problems: he wants to illustrate a technique,
and therefore the possibility to eschew algebra does not interest him. Nor is there any
reason he should point out that the problem allows easy recycling of the secondary
unknown. He therefore proceeds as follows:

From the equality of the first two amounts follows A = 16+1 . Similarly, B = 6+1 ,
C = 14+1 , D = 12+1 , E = 22+1 , F = 1 –6. Summing up we get
A+B+C+D+E+F+ = 7 +64, which still equals 142+1 . Therefore, = 13. From this
the remaining debts can be found.

The last problem in this section making use of several unknowns (fol. 254v) asks for
two numbers (say, P and Q ) fulfilling the condition

P 2+Q 2–(P+Q ) = 78 , PQ+(P+Q ) = 39
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(a reducible quartic). Stifel posits the first number to be

Figure 10

and the second to be A; for convenience he represents
their sum by B. He proceeds in a way that has more to
do with Elements II or with square-grid geometry than
with algebra, using the diagram of Figure 10.

The second condition gives him A = 39–1B.
Thereby he can complete the square, etc.

So far, among the instances we have looked at, only

Figure 11

Antonio (and Pacioli’s borrowed problem, above, p. 80)
used two unknowns in non-linear problems.[149] Two
things are to be observed in this connection. Firstly, that Stifel avoids using his new
formalism in non-linear algebra. Secondly (of great importance later on in our discussion),
that the geometric interpretation allows Stifel to take over from geometry the habit of
naming more than a
minimal set of unknowns
by letters. In a lettered
geometric diagram, all

occurring entities may
indeed be treated on an
equal footing.

The section on fols
292r–301r takes up the use
of several unknowns again.

The problems dealt with are
mostly linear – only two
are not. The first of these
(fol. 292r ) asks for three line segments, given the areas of the three rectangles they contain
pairwise. They are posited to be , A and B. The solution follows from another square-grid
diagram (Figure 11). No algebra is used, and no equation formulated. As we see, the second
power of A is written as A , meaning “the A-kind of ”.

The last problem (fol. 300v) – more difficult than the preceding ones (thus Stifel) and
serving to exhibit the potential of the technique – is inherently geometric but solved by
means of algebra. It deals with a rectangle with sides 12 and 14, subdivided into two
rectangles, the sum of whose diagonals is 28: By the Pythagorean theorem ab 2 is found
to be 122+(1 )2 = 1 ”+144, identified with 1A (i.e., (1A)2). ad 2 is found in a similar
way to be 340–28 +24 , but also to be (28–1A)2 = 784–56A+1A . This leads to 1A =

149 From p. 33 we remember one seeming (but only seeming) exception from the Ottoboniano
Praticha: a linear problem solved by a procedure that leads to a reducible second-degree equation.
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56A+1 –28 –444. Since 1A = 1 +144, A can now

Figure 12

be eliminated. The problem is thus of the second
degree, but only in .

In [1553], Stifel prepared an “improved and much
augmented” edition of Rudolff’s Coss. He replaces
Rudolff’s notation for the second unknown by his own,
and uses it in a number of problems that Rudolff had
solved without using a second quantity. That teaches
us nothing new.

An Anhang containing new problems does. 12 of
24 new problems (all of higher degree) operate with several unknowns. One of them may
have been borrowed from Pacioli [1494: 148v], the question for two numbers fulfilling
the conditions mn = 96, m 2+n 2 = 292, where Stifel makes the positions m := +A, n :=

–A.[150] Pacioli’s parameters are different but his positions the same. The others I
do not remember to have seen elsewhere. Two are solved by means of geometric diagrams
similar to those we have seen, the others by means of algebra. All are quite sophisticated.

The potentially ambiguous notation for higher powers is now left behind: instead of
A ” Stifel here writes AA (etc.); in one problem (fol. 469r ), powers until k, A, AA

and AAA appear.

Immediate impact in Germany

Two works written in German land show (limited) influence from Stifel’s new
technique.[151] One is Mattheus Nefe’s Zwey newe Rechenbuecher from [1565]. Nefe
does not treat algebra in general (that falls outside the scope of standard Rechenbücher);
on (fol. P iiir ), however, he gives a single example of Regula quantitatis. The words might
be inspired by Rudolff – “without understanding this rule one can do little that is useful
in the coß, and in others much less”; but he must also have known Stifel (directly or
indirectly). His example is of type “all except each” and has four participants. In so far
it is thus not innovative; but Nefe has seen that there is no reason to regard one unknown
as primary; his names are therefore A, B, C and D.

Caspar Peucer’s Latin Logistice Regulae Arithmeticae, quam Cossam & Algebram

quadratam vocant, the second part of [Peucer 1556], was written and printed in Wittenberg.
It was apparently meant for the higher Lutheran educational system, but does not seem
to have been a conspicuous commercial success (neither official nor pirated reprints are
known). Towards the end (fol. T vir ) it contains a section De radicibus secundis, “on second

150 The problem, as we have seen on p. 104, goes back to Antonio. Stifel, however, is not likely
to have had access to Italian manuscripts.

151 There may be more, of course. I have inspected some hundred 16th-century Rechenbücher, but
there are many more; nor does “inspected” mean that have I read everything in detail.
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roots”, which initially refers to Rudolff, Cardano and Stifel. The notation is that of the
Arithmetica integra (“1 A, id est 1 A ”, etc.). In agreement with the Humanist program,
some examples are drawn from Greek arithmetical epigrams (mathematical riddles originally
meant to be solved without algebra, and thus by necessity elementary). One is of type
“all except each”. None are spectacular.

Mennher

Of much greater interest, and perhaps of decisive importance, is Mennher’s
Arithmétique seconde (above, p. 67). First in the second part – the algebra – comes a very
orderly exposition of traditional coß with a single unknown. Then, toward the end (fol.
O iv), Mennher introduces the règle de la quantité ou seconde radix. The exposition is
inspired by Stifel, but Mennher does not copy. His notation is the one used by Stifel in
[1553]. Since not many books were around that presented the technique and apparently
none treating it in depth we may safely assume that Mennher was working on his own.
As we see, he is also not shy of speaking about his sources.

First (fol. O iv) comes an “all less each” problem with four participants. It is similar
to one in [Stifel 1553: 312r ]. The parameters are different, however; more important, so
is the choice of the unknowns, for which reason Mennher cannot just proceed like Stifel.
The third problem (fol. O iir ) is similar to Stifel’s two-number problem from [1544: 254v];
the parameters are different, but the argument similar (including the use of a convenient
though somewhat superfluous third unknown). Other two-number problems are similar
to what we can find in [Stifel 1553] but solved differently – either by a better choice of
the algebraic unknowns or by using a diagram instead of algebra; still others are without
counterpart in Stifel.

All in all: Stifel took up the use of two unknowns in non-linear problems tentatively
in [1544], and less tentatively in [1553]. In [1556] Mennher, though producing no striking
further developments, took care that Stifel’s technique could also reach French readers.
In [1565: F fir–G giiv] he was to present the règle de la quantité once again, by then
expanding the treatment, though not much.

Antwerpen was an internationally well connected city, and Mennher was not forgotten.
Descartes’ friend and mentor Isaac Beeckman (on whom more below) possessed one of
Mennher’s arithmetics at his death – see [Beeckmann 1637x: B ivv]; in a letter from around
1666, moreover, John Collins [ed. Beeley & Scriba 2005] mentions Mennher together with
Viète and Viète’s translator Jean-Louis Vaulezard (etc.) as good introductions to algebra.

Viète, as mentioned above (p. 37), only identifies predecessors and colleagues when
he can censure them. Given his interest in spherical geometry, however, it is unlikely that
he did not know at least what Mennher had written about that topic in [1564].
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French writers after de la Roche

De la Roche’s use of the règle de la quantité had no substantial impact on later French
algebraic writers. The next French writer to deal with several unknowns is Peletier in [1554]
(above, p. 42), who (as already mentioned) has not even heard about this predecessor.[152]

Instead, his main inspiration even on this topic is Stifel. A section Des racines secondes

(pp. 95–117) presents Stifel’s system from the Arithmetica integra together with a number
of examples, all except one of the first degree. The one which is not coincides (apart from
the numerical parameters) with Stifel’s first higher-degree problem. Peletier solves it by
means of a geometric diagram, as already Stifel; in contrast to Stifel, however, Peletier
refers explicitly to Elements II (namely, Elements II.4).

Jean Borrel (above, p. 43) borrows de la Roche’s phrase regula quantitatis [Buteo
1559: 189]. He refers to Pacioli and de la Roche, leaving no doubt that he knew them,
but to neither Stifel nor Peletier; even Borrel’s habit, however, was to cite only those
predecessors whom he could castigate. In any case, Borrel’s are 1A, 1B, etc., apparently
the same reduction of Stifel’s (or Peletier’s) system as effectuated a few years later by
Nefe (in his notation for a single unknown, as we remember from p. 62, Borrel also
changes what he had found in his model).

Since Borrel presents only 5 problems using the technique, all of the first degree (pp.
189–196, 357) he has no occasion to introduce higher power or products of the unknowns.
He uses schemes for the operations on multiple equations, not too different from what
had been done by Benedetto (whose work Borrel certainly did not know). There cannot
have been much to learn from him for those who had studied Mennher’s Arithmetique

seconde (or even Peletier’s L’algèbre).
Nor would there have been anything to learn on this account from Guillaume Gosselin’s

De arte magna from [1577] (above, p. 43). Toward the end of that book (fols 80r–84r )
Gosselin deals with the topic of several unknowns under the heading De quantitate

absoluta.[153] His names are the same as those of Borrel (that is, the same as those of
Stifel apart from elimination of the thing as a primary unknown), and all his problems
are of the first degree.

152 De la Roche is not among those writers on algebra whom Peletier had either read or knew about
without having seen their works. In the Latin version of the work from [1560] de la Roche does
turn up in the unpaginated preface, but only as somebody who has written on algebra.

153 This name may have been taken over from Pedro Nuñez [1567: 224v], a book referred to by
Gosselin. Nuñez operates with cosa and quantidad, apparently borrowing from Pacioli, to whom
Nuñez refers (fol. 225v).
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algebra

In the preceding chapters we have traced the development of a number of characteristics
of the algebra that emerged in 17th-century France. A development with stops and goes,
with false starts and long stagnations – rarely involving deliberate explorations, and when,
then often not emulated by the following generations.

More false trails – trails leading nowhere for the moment – could have been included.
Fibonacci did extensive work on the Euclidean theory of irrationals applied to numbers
and their roots, and so did Benedetto, Pacioli, Stifel and Stevin. This theory played no
major role in the emergence new algebra, however, but had to be taken up again in other
contexts and in later times. It is not quite as much a dead end as the geometric proofs
for the basic algebraic cases, which were not predestined to be ever integrated in new
developments, being after all mathematically trivial in the new context; but almost.

Evidently, even the characteristics that we have followed in Chapters II–V did not
by necessity end up integrated in a new whole, although our starting point was that they
did end up being integrated. We have argued so far that the early 17th had flour, eggs,
butter and sugar at disposition. That did not automatically produce cake. Was the cake
the outcome of a deliberate decision to make it? And whether this be the case or not, which
was the oven where it happened?

It happened in France, as we know. But from the story as told here, nothing in the
internal development of mathematics pointed to France. In order to understand the role
of France, we have to step outside the closed space of mathematical techniques.

Mathematical cultures

In recent centuries algebra, even higher-degree algebra (not to speak of offsprings
like the infinitesimal calculus) are essential to many applications of mathematics. That
was not the situation during the centuries where abbacus algebra and coß flourished, nor
in the 17th century. So, why were brilliant mathematical minds engaged in developing
algebra, and why did less brilliant minds try to show that they understood it? The answers
for the late Middle Ages and the 17th century are deceptively similar.

The raison-d’être and format of abbacus algebra

Abbacus masters were members of a liberal profession in a market economy, as pointed
out on p. 11. They competed with each other, either for students or for positions at
municipally financed abbacus schools. There, ability to solve problems proposed by the
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adversary at a competition or the aptitude to propose problems the adversary could not
solve were useful. One effect of that was the spread of false rules claiming to provide
solutions to irreducible cubics and quartics [see, e.g,. [Høyrup 2009: 50–52]; another, of
greater general importance, was its synergy with the aim of the teaching in the abbacus
school. Even school students had to be trained in solving problems – simple problems
in their case. Competition as well as abbacus-school teaching pushed toward seeing problem

solution, as the general format in which mathematical knowledge should be formulated.
Fibonacci, Benedetto, Pacioli (and a few others) took up the study of the Euclidean

irrationals, and there the format was evidently different. It was thus possible for abbacus
writers to formulate knowledge in a format that approached the exposition of theory (though
with scant proofs). But that style did not spread; when it was realized and formulated by
Pacioli [1494: 150f] and others from his times onward that equations involving three powers
can only be solved by general rules if the three powers are equidistant in the sequence
of powers, this is taken note of as an empirical fact; in the coß, this insight is used when
the many rules are reduced to eight.

Rechenmeister culture was not intellectually competitive as abbacus culture had been,
or at least not to the same extent (some wry or ironical remarks indicate public intellectual
scorn was not totally absent); those Rechenmeister who wrote books competed on the book

market. But they had no incentive to change the inherited preferred format for mathematical
knowledge – their audience still wanted to learn how to solve practical and practically
looking problems; in consequence the Rechenmeister did not change the preferred format.

Scholastic mathematics

The situation of mathematics in the Latin tradition had been totally different. Its main
constituents were these:
– since the later 10th and 11th centuries, Boethian arithmetic and music theory, taught

in the cathedral schools and later in the earlier stage of the arts faculty curriculum;
– from around the same time, the use of the “Gerbert abacus”, taught in the cathedral

schools – but then replaced by
– algorism, teaching the use of the Hindu-Arabic numerals, mainly aiming at astronomical

calculation;
– lectures on the Elements, on Witelo’s Perspectiva communis, and other works.
The difficult categorization and naming of the Boethian ratios were trained by means of
a board game rithmomachia, and probably also by repetition; the training of the Gerbert
abacus and algorithm certainly made use of more than the few illustrative examples
contained in the treatises, but still examples fitting within the framework of these.

Lectures would be followed up by disputations, and disputations about mathematical
lectures might easily be concerned with metamathematical discussions about the status
of objects of the lectures. That can be seen in the written emulations of disputations, the
collections of quaestiones. The only way to dispute about a correctly performed Euclidean
proof is indeed to challenge its foundations.
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The disputations were agonistic by definition, but like the quaestiones they aimed at
finding a decision, not at formulating new mathematical knowledge. The format for
expressing mathematical knowledge remained that of the mathematical textbooks – the
Elements, Jordanus’s Liber philotegni, and more books joining them as time went on.[154]

Characteristically, even Jordanus’s De numeris datis, a domestication of Arabic algebra
emulating the Euclidean Data, reformulates the Arabic problem solutions as theorems.
The format of scholastic mathematics was theory expressed in theorems.

That format still governs Stifel’s Arithmetica integra. This is the reason he has as his
main aim to develop a technique for the use of several unknowns – his problem solutions
are illustrations, not a primary aim. The format of the re-edition of Rudolff’s Coss, in
contrast, is the problem, and here, the purpose of the Anhang is to show that Stifel can
do even better than Rudolff. This agonistic context invites the expansion of the system.

Humanist mathematics

“Humanist mathematics” – is that not a contradiction in terms (not in our irrelevant
perspective but in that of the Renaissance, where “Humanist” points to the Humanist
movement as embodied by Francesco Petrarca, Giovanni Boccaccio, Marsilio Ficino and
their kind)?

Until around 1450 it certainly was. Then some interaction between engineers and
architects like Brunelleschi with the Humanist current took off. These “higher artisans”
(not really including the abbacus masters, though the Florentine encyclopedias exhibit some
affinity, cf. note 84) tended to see themselves, and to be seen as “the Archimedes of our
time”, reflecting the Humanist understanding of Archimedes as an engineer serving his
city and king, in the image of the court mathematicians of the epoch. The decisive jump,
however, took place after 1500.

Humanism had always been concentrated on the “civically useful”, originally literary
and rhetorical service to the city elite or the city tyrant. By 1500 it had become clear that
Latin letters did not suffice to protect the city walls against the French artillery, nor to
plan the great drainage projects making land fit for agriculture (Bombelli was engaged
in one). Nor would they help the Spanish and Portuguese Crowns to make themselves
masters of as much of the world as they could grasp. Fortification, engineering and
transoceanic navigation were all in need of mathematics, and for the Humanists mathematics
had to be Greek mathematics to the extent this was possible (sometimes beyond the
possible, as when mathematicians from Regiomontanus to Clavius ascribed algebra to
Diophantos).

So, around 1500, a few Humanists started collecting and publishing or translating Greek

154 This is not to say that there were regular lectures on all of these. The Liber de triangulis Jordani

seems to be a student reportatio of lectures [Høyrup 1988:347–350]. This shows that lectures were
held on the Liber philotegni; but it may well have happened only once, Jordanus himself being the
likely lecturer. Similarly in other cases.
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mathematical texts. This, we may observe in passing, is the time when “Northern
Humanism” took off, the Humanism of Erasmus and Thomas More and soon of
Melanchthon – the Humanism based exclusively on texts, while that of Italy had had
Antiquity before its eyes though in ruin. 1500 is also close to the end of what historians
of art consider the Renaissance – after 1520 they mostly prefer to speak about Mannerism,
and soon Baroque.

Giorgio Valla’s posthumous De expetendis et fugiendis rebus from [1501] contained
Euclidean excerpts translated directly from the Greek, and also some Archimedes through
Eutocios’s commentary. Bartolomeo Zambertis’ translation of the Elements and minor
Euclidean works from an inferior Greek manuscript appeared in 1505. These volumes
provided versions with “Humanist credentials” but not much that went beyond what was
known in the Latin tradition.

Around 1500 (the beginning of French Humanism), Lefèvre d’Étaples started
mathematical publishing. His perspective was Neoplatonic, but his mathematics was that
of the scholastic tradition (Jordanus, epitomes of Boethius, rithmomachia, the Elements).

New old mathematical knowledge appeared from 1533 onward. That year saw
Grynaeus’s edition of the Greek Euclid with Proclos’s commentary. The editio princeps

of Pappos’s Collection appeared in Basel in 1538, that of Archimedes in Basel in 1543;
Memmo’s Latin edition of books I–IV of Apollonios’s Conics appeared in 1537
(Commandino’s in 1566); Xylander’s Latin translation of Diophantos, as mentioned, was
published in 1575. “Humanist mathematics” thus took its beginning around 1530–1540,
two centuries after Humanism proper.

Agonistic mathematics, once again

As we have noticed, many French algebraic writers after de la Roche and until Viète
did not cite predecessors except in order to show themselves superior (Peletier and Gosselin
being exceptions). This is quite different from the general absence of citations in the Liber

abbaci or Pacioli’s Summa,[155] and is evidence of agonistic behaviours (it would be
misleading to speak about a return of these, since there is no inherent connection to the
competitive confrontations of the abbacus masters).

Competition based on mathematical competence was no mere internal characteristic
of the mathematical ambience. This is revealed by a familiar story [Busard 1976: 22]:

Viète’s mathematical reputation was already considerable when the ambassador from the
Netherlands remarked to Henry IV that France did not possess any geometricians capable
of solving a problem propounded in 1593 by Adrian Romanus [van Roomen] to all

155 Pacioli. it is true, states in the beginning of his unpaginated Summario that most of the Summa

have been taken from Euclid, Boethius, Fibonacci, Jordanus, Blasius of Parma, Sacrobosco and
Prosdocimo de’ Beldomandi. Apart from Euclid and Fibonacci, however, this list of Latin writers
has nothing to do with his real sources. It constitutes an oath of fealty, exactly the opposite of an
attempt of the author to claim he had done better than these luminaries.
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mathematicians and that required the solution of a forty-fifth-degree equation. The king
thereupon summoned Viète and informed him of the challenge. Viète saw that the equation
was satisfied by the chord of a circle (of unit radius) that subtends an angle 2π/45 at the
center. In a few minutes he gave the king one solution of the problem written in pencil
and, the next day, twenty-two more.

In the Italian Hight Renaissance, good Latin style had been a diplomatic weapon for
Florence and other Italian Renaissance city states; that is the reason they appreciated
Humanists.[156] Now, two centuries later, it was the turn of mathematical prowess to
become an affaire d’état.[157] As further illustrated by our story, this prowess was put
into play by the ability to solve problems. No longer sophisticated versions of recreational
classics – “purchase of a horse”, “men finding a purse”, etc. In the van-Roomen–Viète
case, as we see, it had to do with new developments of trigonometry, but more broadly
it was defined by the new Humanist mathematics.

The kind of problems by which late-16th-century mathematicians challenged each other
is reflected in Viète’s Variorum de rebus mathematicis responsorum liber VIII, “Book
8 of various responses about mathematical matters” [1593a]:
– two intermediate proportionals;
– squaring and rectification of the circle and of circular segments, using Archimedean

spirals and the quadratrix;
– construction of a regular heptagon;
– lunules; etc.
In the end Viète deals with spherical trigonometry, a topic that had his special interest;
this is the only topic that points to broader practices (astronomy and navigation). Soon,
Pierre de Fermat, Gilles de Roberval and of course Descartes were to widen the horizon,
taking up not only further areas of Greek mathematics but also, for instance, the geometry
of kinematics. Geometry, however, was core as well as periphery.[158]

156 The Duke of Milan “was often heard to say that he was not damaged as much by a thousand
mounted Florentine warriors as by Coluccio Salutati’s style” [Gragg 1927: x]. Salutati was the
Humanist Chancellor of Florence from 1375 to his death in 1406.

157 Not only mathematical prowess. The princely interest in mathematical splendour has a close
parallel in the phenomenon of 16th-century “courtly science” as described by William Eamon [1991:
35], characterized (along with interest in the occult) by

fascination with and the display of meraviglia, which is best seen in the princely gardens
and cabinets of curiosities [...] symbolically demonstrating the prince’s dominion over the
entire natural and artificial world. Carved gems, watches, antiques, mummies and
mechanical contrivances were displayed side by side with fossils, shells, giant’s teeth,
unicorn’s horns, and exotic specimens from the New World.

This was certainly different from the incipient new natural history; but it provided a substrate and
foundation for patronage of that field.

158 Thanks to Fermat, this sweeping generalization is not quite true. Chapter XCVIII of John Wallis’s
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Neither the “return” to problem-solving as the central manifestation of mathematical
proficiency nor the restoration of Greek geometry produced the new algebra directly, neither
singly or in combination. Neither, indeed, had to do with algebra. Their importance derives
from the decision of Viète and Descartes to apply algebra in geometric problem-
solving.[159] Algebra, indeed, had never been a theory, but always existed as a tool for
solving problems, albeit mostly non-geometric problems.

Both speak in derogatory terms about the algebra they had inherited. Viète speaks
of algebra as “a new art, or rather so old and so defiled and polluted by barbarians that
I have found it necessary to bring it into, and invent, a completely new form” [1591a:
2v]. In the Discours de la méthode, Descartes [1637: 19] speaks about existing algebra
as “a confused and obscure art that puts the mind in difficulty instead of a science that
cultivates it”.

Both, on the other hand, were chasing a tool that would allow them to solve all
problems. Viète famously closes his Isagoge [1591a: 9r ], the introductory part of his
reconstruction of algebra, with the motto nullum non problema solvere, “to leave no
problem unsolved” (revealing that he cannot imagine other kinds of problems than those
pertaining to geometry). In a letter to Isaac Beeckman from 1619, Descartes expresses
the somewhat better defined ambition to solve all problems “dealing with any kind of
quantities, discrete as well as continuous”, by means of curves corresponding to higher-
degree equations [ed. Adam & Tannery 1897: 157].

But which was the algebra they were speaking about?

Algebra as Descartes knew it

Descartes frequented the Jesuit collège La Flèche from he was 10 until he was 18
(1606–1614). This is where, as a youngster, as we read in Discours de la méthode

[Descartes 1637: 18], he had read some

logic and, among the mathematics, the analysis of the geometers and algebra, three arts
or sciences which seemed to promise something for my purpose.

Treatise on Algebra [1685: 363–371] thus takes as its starting point a number-theoretical problem
proposed by Fermat in 1657 “as a challenge to all the mathematicians of Europe”. It is already
presented, along with other number-theoretical problems linked to Fermat, in Wallis’s Commercium

epistolicum from [1658: 34]. Apart from Fermat, van Schooten and Wallis himself, the correspondents
are dilettanti, whose mathematical ability equalled their (not supreme) nobility.

159 This is quite different from what Nuñez did to algebra and geometry in [1567: 227v–331r ]: Wishing
to promote algebra, he illustrated the potential of the technique by showing how it could solve
geometric problems chosen for the purpose (and mostly traditional). This did not ask for any change
of algebra as he had received it, and produced none. Cf. [Høyrup 2002].
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Algebra he had been taught on the basis of Clavius’s textbook [1608], a coß in German
style though in Latin, much in debt to Stifel. If the teacher had gone until p. 72, Descartes
may also already have learned about the use of several unknowns, in Stifel’s notation from
1544 (not 1553), but expanded also to negative powers.

Thinking back (when he had created his own notations in the Géometrie) Descartes
thought (as just quoted) of Clavius algebra as “a confused and obscure art that puts the
mind in difficulty instead of a science that cultivates it”. Yet he still uses Clavius’s cossic
notation in the letter to Beeckman from 1619 in which he expresses his ambitions to solve
all problems “dealing with any kind of quantities” – by the way without betraying the
least trace of familiarity with several unknowns.

In 1628 Descartes met Beeckman again; in a note [ed. Adam & Tannery 1908: 334]
Beeckman reports that Descartes has told him to have invented a general algebra where
all the notae cossicae, the “cossic characters”, are represented by lines (as they were to
be in the Géométrie). But the first four powers are still written , , and ; in a simple
algebraic calculation given as example, binomials are still added in a scheme.

By then, if not before, Beeckman may have introduced Descartes to Mennher, or
Descartes may have discovered Mennher in Beeckman’s library. In any case there is still
no trace of influences other than the coß, mediated either through Clavius or perhaps
through Mennher. And there is certainly not the slightest suggestion that Descartes should
have read Viète.[160]

In the Géométrie Descartes [1637: 398–400] also knows Cardano’s Ars magna, but
that seems to be a recent acquaintance; in any case it will not have helped him to bring
about the new “general algebra”.

Viète’s “defiled and polluted” algebra

Descartes does not himself identify the algebra that “puts the mind in difficulty”; we

can do so because we know his school book and because we can recognize its ways in
his interactions with Beeckman. If we had possessed only the Géométrie we would have
been at a loss.

So we seem to be with Viète. His terms for the powers are obviously borrowed from
Xylander, perhaps influenced by Gosselin. He mentions Diophantos and other Greek authors
(without taking over more than the names for powers and such terms as analysis and
zetetic), but he is almost mute regarding writers on algebra – he mentions Cardano’s
Practica arithmeticae [1539] twice, but that is all. The contents of his writings confirm
that he had “found it necessary to bring it into, and invent, a completely new form”. We

160 In a long patriotic rant, Nathaniel Hammond [1742: xvii] claims that Descartes had learned from
[Harriot 1632] (and that the Géométrie was published anonymously in 1637!). The fancy can be
rejected already for chronological reasons: as shown by Christian van Randenborgh [2012: 225],
van Schooten was acquainted with the manuscript already in 1632.
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may say that his solutions of the third- and fourth-degree equations show that he knew
the Ars magna – cf. [Witmer 1983: 4 n.7]. Beyond that, many of the problems in the
Zetetica [Viète 1591b] are reformulations of what is found in numerous abbacus algebras,
but precisely because it is found in many books and the formulations agree with none of
them, we cannot say which books he brought into a new form. His interest in spherical
geometry suggest he could have read Mennher; for the same reason. he could have looked
at Nuñez. From the former he might have learned about the use of several unknowns (but
Peletier and Borrel are alternative possibilities, as even the Arithmetica integra); from the
latter not.

Receiving abstract coefficients as a gift not asked for

Viète also keeps his mouth shut regarding the introduction of abstract coefficients.
Descartes is less taciturn. Once we have understood why Descartes did as he did, we may
see how Viète fits within the same picture.

In 1628, Descartes’ ambition had been to solve all problems about continuous as well
as discrete quantities. In the Géométrie, the discrete quantities have disappeared – the
Géométrie is, precisely, about geometry and not about number theory, and about how to
solve geometric problems.

The central subject is “Pappos’s problem” – see, for instance, [Bos 2001: 272–274].
That, however, is immaterial to what we are discussing here. Decisive is that the problem
is formulated around a lettered diagram. In a lettered geometric diagram, as observed on
p. 108, all occurring entities may indeed be treated on an equal footing.

When geometers of the time (indeed geometers since Euclid) wished to solve a
problem, they looked at or drew a lettered diagram – a paradigmatic example displaying
its structure.[161] What to do if they wanted to solve it by means of algebra? Descartes
[1637: 300] tells us:

When wishing to solve some problem, one should first look at it as already solved, and
give a name to all the lines that seem to be needed in order to construct it, those that are
unknown as well as the others. Then, without making any difference between these known
and unknown lines, one should run through the difficulty according to the order it shows,

161 It is often overlooked that even the diagrams used in Euclid’s proofs are paradigmatic examples.
The propositions are abstract, but the proofs based on a specific configuration. If our misconception
of the nature of Greek mathematics should prevent us from seeing that, we may look at Elements

V.1 [trans. Heath 1926: 138]:
If there be any number of magnitudes whatever which are, respectively, equimultiples of
any magnitude equal in multitude, then, whatever multiple one of the magnitude is of one,
that multiple also will all be of all.

In the proof, Euclid takes the “any number of magnitudes” to be 2, and similarly, the “equimultiples
... equal in multitude” to be 2. Even here the proof is performed on a paradigmatic example – neither
more nor less general than the solutions offered by abbacus masters for their horse problems.
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the most natural of all, in which way they depend mutually on each other, until the point
where one has found a way to express one and the same quantity in two ways: which is
called an equation.

As already Stifel, Descartes does not look for a minimal set of unknowns – everything
that seems to play a role gets a name. Once the idea to apply algebra with several
unknowns to geometric problems is there, quasi-abstract names (that is, not specified
numbers but names linked to specific entities appearing in a diagram) would be used for
everything pertinent with no distinction between what would turn up as coefficients in
the equations and what would turn up as unknowns.

Slightly later, Descartes introduces (but does not explain) the principle to use letters
from the end of the alphabet (first z, then if needed also y, and then x) for the unknown
magnitudes and letters from its beginning for those that are known – the quasi-abstract
coefficients.

We should take note of the words “all the lines that seem to be needed”. A traditional
lettered diagram would mostly give letter-names to points, not to the segments. But algebra
applies to quantities, and these are the segments. Expressing the equations by means of
two letters defining each of these would be cumbersome, and accordingly Descartes (as
we have seen it in Stifel, and as we shall see it in Viète) tacitly changes the way lettering
is made. The quasi-abstract coefficients presented themselves as a gift that could not be
refused; but as such gifts usually do, this one came together with conditions.

Geometry and algebra with one unknown

Applying algebra with an unlimited number of unknowns to geometry led Descartes
quite naturally to those quasi-abstract coefficients that were to become fully abstract once
the new algebra left its native geometric soil behind. We may compare to what an equally
talented geometer had to do when applying algebra with a single unknown to intricate
geometry.

Figure 13

That geometer is Umar al-Khayyāmı̄, certainly not inferior to Viète and Descartes
as a mathematician. A small treatise of his [ed. trans. Rashed & Djebbar 1981: I, 73–90]
deals with a particular partition of a circular arc. The arc AB (left in Figure 13) is to be
divided at G in such a way that AE : GH = EH : HB. A long analysis reduces this to the
finding of a right-angled triangle ABC (right in the diagram), with height BD, in which
AB+BD = AC. In order to apply his algebra with only one unknown, al-Khayyāmı̄ needs
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to posit that AD = 10; that leads him to an equation whose coefficients are numerically
fixed. Descartes (as well as Viète) would have posited AD to be, for instance, b, which
would automatically (though obviously after as much calculation as made by al-Khayyāmı̄)
have produced an equation with quasi-abstract coefficients.

Viète’s abstract coefficients

Viète tells nothing directly about how he gets to the abstract coefficients – which,
since he sets out in [1591a] and [1591b] with his new algebra and not its applications to
geometry, are really abstract. He even conceptualizes the innovation [1591a: 5r ],
distinguishing between logistica numerosa, where the coefficients are numbers, and logistica

speciosa, where the species or forms of things are shown.[162]

In any case, there is little doubt (if we combine his motto nulla non problema solvere

with his actual interests outside algebra) that his motive for creating a new algebra was
its application to geometric problem-solving. If we look at what he does when he applies
his new technique to geometric problems – for instance, in the Zetetica [Viète 1591b:
14v–15r ] we also observe that letter names are given to segments, not to points. In contrast,
in the Supplementum geometriae [Viète 1593b], where all proofs are based on proportion
theory and so-called “geometric algebra”, points and not segments carry letter names.

In chapter V of the Isagoge (fol. 7r ), “On the laws of zetetics”, Viète describes the
procedure to be used when an algebraic solution is aimed at:

Magnitudes, those which are known as well as those which are asked for, should be
combined and compared, adding, subtracting, multiplying and dividing, always observing
the law of homogeneity.

All in all, Viète’s road toward the abstract coefficients (in the latter description, with its
implicit basis in a diagram, quasi-abstract) appears to have been very similar to that of
Descartes. Even Viète received them as a gift not asked for but coming by necessity out
of the application of algebra with an unlimited number of unknowns to complicated
geometric problems – he did not “invent” them out of the blue.

Descartes’ other innovation

The introduction of quasi-abstract coefficients (considered fully abstract by almost
everybody) is usually seen as the watershed between pre-modern and modern algebra.
Also fundamental, as claimed on p. 4, is the establishment of the general parenthesis
function. This other pre-requisite for the emergence of modern algebra was absent from
Viète’s work but so essential that his interpreters had to read it into them – see p. 72. What
they read into them, however, would not have sufficed, for instance, for Euler’s purposes.

162 This reference to “species or forms of things” seems to be borrowed from scholastic Aristotelian
philosophy.
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What about Descartes?

Descartes makes use of three different parentheses, all of them with us today, or almost.
The first is the old fraction line, the second the extended root sign , which allows
nesting

1

2

1

4
aa bb

[Descartes 1637: 303]. It is not different in idea from what Bombelli had used, but it
happens to have been conserved. The third, though looking different, might be taken for
an immature fore-runner of our present-day all-purpose parenthesis (but see imminently).

The first occurrence is this (left how it looks in the collected works [ed. Adam &
Tannery 1902: 398]; right, the original print [Descartes 1637: 325]:

Descartes_equation

As we see, the parentheses are not enclosed in pairs of brackets; they are written vertically

Figure 14. Descartes’ brace-less parenthesis

[top Descartes 1637: 384; bottom

Adam & Tannery 1902: 458]

and kept together by a brace to the right. That should be immaterial, however, as long
as they are unambiguous. It is also irrelevant that the brace had been used by Viète with
a different function; not quite as irrelevant, perhaps, is Vaulezard’s parenthesis-like
reinterpretation of Viète’s notation
(above, p. 71). In principle it should
allow nesting, but Descartes never
tries – his applies this third kind of
parenthesis rarely, and only to express
a composite coefficient. On a few
occasions he omits the brace but
indicates the structure by using a
reduced type size for the elements of
the parenthesis (unfortunately rendered
badly in the collected works – see
Figure 14). It would hardly be possible
to use the notation to express a power of a polynomial, or the product of two polynomials.
All in all, what Descartes has invented here is a third kind of special-purpose parenthesis
and not the all-purpose parenthesis. This time he has not received a gift not asked for,
the task has forced him to invent, not too different from what had happened to Antonio,
Benedetto and Cardano. As often with a first invention under such circumstances, the result
is somewhat clumsy.

That his invention had greater consequences than Antonio’s nested roots or Benedetto’s
linear algebra with multiple unknowns depended on Descartes’s readers. Even they had
sparse use for a general parenthesis, but occasionally they encountered the need to widen
the use of what they had learned from Descartes.
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Newton and Wallis

Two readers who widened the parenthesis idea are Isaac Newton and Wallis. There
will certainly be others, but these are the two I looked at for the purpose.

Newton’s Arithmetica universalis was published in [1707], but it is based on algebra
lectures he held during the 1670s.[163] Like Descartes’ Géometrie it gets most of what
it needs from the classical special-purpose parentheses, the fraction line and the extended
root sign. Beyond that, it generally uses the vinculum, a stroke above, to indicate a
parenthesis. It looks like the extension of the root sign without the root sign itself, and
that is certainly how the printer made it (his extended root sign is indeed made in two
unconnected parts). Whether Newton got his idea from there can probably not be known
with certainty (nor is it of major importance except if we take up the psychology of
creativity).[164] Among other things he uses it for the products of two polynomials (see
Figure 15, top). It can be justly characterized as defining a general parenthesis.

Newton also knows Descartes

Figure 15

brace-delimited composite coefficient,
and uses it when needed; an example
is shown in Figure 15, middle. As we
see, Newton uses the variant where the
brace is omitted. That may be because
he uses the brace for a different
purpose (see Figure 15, bottom),
namely exactly as Viète had done. In
principle he might thus have read and
understood Viète – but since the
“Viète” that was widely known was
the one we find in [van Schooten
1646], this is unlikely. Others at the
time use the brace in a similar way,
and Newton probably followed their
customs.

163 More could be learned about Newton’s thought from his manuscripts, but not about his
contributions to historical development. According to what I have seen in them they tell nothing
important on the present account beyond what already follows from scrutiny of the Arithmetica

universalis. In the published work, just as in the manuscripts, Newton appears to have understood
that Descartes’ brace is just another specific-purpose parenthesis, and he only uses it as such.

164 There is some evidence that Newton saw the connection. In Analysis per Quantitatum Series,

Fluxiones ac Differentias [1711: 53 and passim] he speaks of composite radicands as vinculum

radicis. The manuscript seems to be from 1671 [Westfall 1671: 135] and thus to predate the algebra
lectures.
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Wallis went further in his extensive Treatise on Algebra from [1685].[165] Even
he uses the classical special-purpose parentheses profusely, and rarely needs more. On
one point, however, he not only goes further but much further, namely on pp. 332–333.
The context is quadratures and development in infinite series. Still geometry of conic
sections, for sure, yet not the kind Viète, Fermat and Descartes had dealt with but an early
step in infinitesimal calculus. Here, parentheses marked by vincula are raised to integer
or broken powers (the latter another radical innovation), such as .[166]

A look at writings treating of infinitesimal analysis from the next two decades, for
example Guillaume François Antoine de l’Hospital’s Analyse des infiniment petits from
[1696] and the Gottfried Wilhelm Leibniz-Johann Bernoulli correspondence [ed. Bousquet
1745] shows that vincula as well as parentheses contained by round brackets abound –
together of course with the traditional special-purpose parentheses, that is, the fraction
line and the extended root sign.

The truly general parenthesis

Infinitesimal calculus could not do without the all-purpose parenthesis. After the
isolated experiments of the late 17th century, 18th century higher mathematics adopted
it to the full, as a tool so obvious that there was no need to notice it (the quip that fish
do not know about water applies here). That opened the road to such fabulous calculations
(to mention but this example) as Euler’s development of the infinite fractional product
[1748: I, 257]

as the sum

165 Other works of his would illustrate his very informal ways, for instance, his insertion of rhetorical
explanatory parentheses inside mathematical expressions – like Cardano, Wallis seems to have been
a great mathematician not because of but in spite of his notations. In the present perspective, what
I have observed in these other works was unimportant.

166 The fractional exponents are introduced on p. 288:

Understanding, by the Exponent of the Side, Square, Cube, &c the whole Numbers 1,2,
3, &c, and of the Roots Quadratick, Cubick, &c, the Fracted Numbers 1/2 , 1/3 , &c; and of
their Compounds, the Square Root of Cubes, the Cubick Root of Biquadrates,&c. 3/2 , 4/3,
&c; and of their Reciprocals; –1, –2, –3, – 1/2 , – 1/3 , – 3/2 , – 4/3 , &c.

Elsewhere, Wallis uses “exponent” in the sense of “identifier” (as Peletier): as a designation for
the fraction p/q corresponding to a ratio p : q (in the preceding tradition known as its “denomination”);
and for the factor of increase in a geometric progression. See [Wallis 1585: 78, 89].
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.

Euler_2

After that, though hesitantly, even ordinary and elementary algebra received the general
parenthesis as a gift – but only gradually, and from its own offspring.[167]

Once the quasi-abstract coefficients had been introduced, they had been adopted
systematically by every participant in the development of the new mathematics of the 17th
century – Harriot, Fermat, etc. They were the sine qua non of participation in that
endeavour.

The general parenthesis, instead, was the sine qua non of 18th-century mathematics.
The story promised in the Introduction is thereby finished.

167 In [1726: 32f ], Jean-Pierre de Crouzas uses the vinculum as Newton had done in the Arithmetica

universalis for the multiplication of two polynomials, and on p. 283 in order to explain the universal
root (after that the extended root sign with nesting is used). On a few occasions the vinculum is
used where it is algebraically superfluous, to delimit a complete expression (p. 412 and passim),
and on p. 469 when the square on a line segment named with two letters is expressed – none of
these are algebraic uses. On p. 481, a brace is used in Viète’s manner. In a book of almost 500
pages, this must be said to be a modest use of the general parenthesis.

In [1742], Hammond published The Elements of Algebra intended “for beginners” and to be
“as useful as possible to the Publick schools” (thus the preface, p. v) and mainly based on [Harriot
1631]. It is thorough, everything meticulously explained with many examples. Mostly these are
constructed in such a way that only the classical special-purpose parentheses are needed (for the
composite radicand it uses the extended root sign instead of Harriot’s ambiguous notation). On p.
261, however, and again on pp. 263 and 268, Hammond cannot avoid the vinculum (explaining
on p. 261 as well as 278 what it effectuates).

At the exams of St. John’s College in 1797 and 1800 (that is, also in Eton-Oxbridge context),
the students were expected to understand and solve this equation [Rotherham 852: 4]:

=
123 41√x

5√x x

20√x 4x

3 √x

2x 2

(5√x x)(3 √x)
Now, it seems, the general parenthesis (and the Eulerian way to designate the unknowns) had become
staple food in basic algebra (provided Rotherham is faithful to his manuscript).

A full account is given in [Høyrup, forthcoming].
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Coda

This was thus the story of the often meandering transformation of al-jabr as received
in Latin Europe into the nascent modern algebra of the 17th and 18th centuries, told through
the changes of a set of distinctive characteristics.

Let it be said in conclusion that real history was much more meandering. In real
history, the characteristics that were traced were not separate; that sometimes shines though
the story as I told it, but in the interest of my project I separated as much as I could. Even
apart from that, real history was much more winding and bending than illustrated here:
after all, I have concentrated on those aspects of the story which either seem to point to
the eventual outcome or look as false trails that after all did not contribute to the synthesis
as we might have expected them to do. As von Ranke (see note 44), I tell “only [partial]
histories, not History”

Let is also be said that my story, with all its restrictions and shortcomings, was a story
about elements which in synthesis went into the creation of the new algebra; it says nothing
about how this new tool was used by Viète, Descartes and all those who followed; others
have done that much better than I could do. Nor does it take up how the “new” algebra
itself, originating as a technique for formulating and solving equations, was transformed
into theory; that other story had started with Cardano, and accelerated in the 17th century.
Even that, other friends and colleagues have done better than I would be able to. Mis-
paraphrasing Wittgenstein: Where others can speak much better, there one should shut
up.
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